)ﬂD-HiSS avs DETAILED DEélGN AND IMPLEMENTATION OF A
MULTIPROGRAMMING OFERATING SYSTEM.. (U} RIR FDRCE INST
OF TECH MRIGHT-PATTERSON AFB OH SCHOOL OF ENG

UNCLRSSIFKED R K MILLER DEC 83 RFIT/GCS/EE/83D-14

.

13

T T T T T,
“r

i W28 |2.5 ‘
e— 55 3.2
——— l: B2
e L2
5o §20
| . I lI:h:
= mﬂ 1.8
N2 flis wes |
= = ==
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
“’* ’ - -W:N»«;!:m ,ma
)
e
o
I'\:
Dl ,.‘; ;.","‘ ﬁ', 1 B ™

Py n

YOO 0N SRR AL UGN
)ﬁj’ﬁa " *}.’- \$'$"‘- '?\ A s a\"\
5'(..;"'- \'_‘-‘.1\'.!. -'A.\ o
i - .-!‘!. ., .. ‘\' Y $-I' -"

AVA1380%8

DETAILED DESIGN AND IMPLEMENTATION OF A
MULTIPROGRAMMING OPERATING SYSTEM FOR
SIXTEEN-BIT MICROPROCESSORS

THESIS

AFIT/GCS/EE/83D-14 Ronald K. Mililer
2Lt USAF

Dysl

ELECTE)
FEB 22 1984

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.‘.-.
.°

P4
frev,

-t

XY,

v, T

AFIT/GCS/EE/83D~-14

Accession For
NTIS GRA:I X
DTIC TAB O
Unannounced 0
Justification ___

By
Distribution/
Availability Codes

Avail and/or
Dist Special

il

DETAILED DESIGN AND IMPLEMENTATION OF A
MULTIPROGRAMMING OPERATING SYSTEM FOR
SIXTEEN-BIT MICROPROCESSORS

THESIS

AFIT/GCS/EE/83D~-14 Ronald K. Miller
2Lt USAF

Approved for public release; distribution unlimited.

IEDLT!C

N e

FEB 2 2 1934

DA SR

q‘ »” r‘.f....-v_ .~.‘¢—~ "

P TR LSS A RS YR A VLo ALY A0 SUE NI S . ¥ JR TULTVINIS] R "'E"l"l"n'-"&fi"&"."'."'T

[4:5%

S AFIT/GCS/EE/83D-14

fq DETAILED DESIGN AND IMPLEMENTATION OF A
MULTIPROGRAMMING OPERATING SYSTEM FOR

SIXTEEN-BIT MICROPROCESSORS

b WS
ad

0

%

THESIS

v 5
AN wh

Presented to the Faculty of the School of Engineering

o of the Air Force Institute of Technology
"i Air University
'3 . in Partial Fulfillment of the
2 ﬁa Requirements for the Degree of
3 Master of Science
t;3Q
q.'

:.

9
>

I

by

| %5
2 Ronald K. Miller, B.S.

!
?§ 2Lt USAF

Graduate Computer Systems

“
15\ December 1983
N
N
;* 1Y
ji 7 Approved for public release; distribution unlimited.
o
o

_-‘ 0‘. __________ LY A {
Tadar’, li‘ !_-l !-l.. -'. AT ;‘ a~ I_\-H_ \A:A".B.‘.I PR IS PR I I

-w.\-bx_-.'
A

¥ P SO YN

oas VIJLLJLL

22 (ON Preface

This thesis presents the detailed design and
implementation of a multiprogramming operating system for
sixteen-bit microprocessors. The detailed design is based on
the works of Robert J. Yusko, Mitchell S. Ross, and Douglas
S. Huneycutt, Sr. I would like to thank these men for their
efforts which made this effort possible.

I would like to thank my faculty advisor, Dr. Gary B.

Lamont, for his advice that was given throughout this effort.

I would like to express my appreciation to Lt. Paul E.

3** Cruser for his cooperation and help in this effort. I would
%& - like to thank my parents Ronald W. and Margaret L. Miller,
w for their support and love. I would also like to thank my
gz In-Laws Robert J. and Katherina A. Waldrop, for those
gg enjoyable breaks from school and their always supportive
“‘ love.
3¢ Finally, I would like to thank my wife Linda, for just
ZS being herself, and helping me through those rough times. 1I'm

sure who will be glad to have her "014d" husband back.

» . .
1) \{*{

“ ii

)
l‘:;:.:q')) A
W R h‘\\’ RLATRN QN N RN L

.

3 ;' "'"". -‘ . 'y ' ?”)” "("f“..-f .!' Y .-:"q.' L f r‘.’\" '-' " ". .'-.."--" N u“‘{"d‘;‘.":!"*“" .1“

P

.
32
-
R .
§§ éS? Table of Contents

Preface ® © 0 0 5 200 90 0SSPSO L OO S TSSOSO S SO SO E eSO ii

f'.if Table of contents ® ® 5 & & ¢ & ¢ PSSO OO S O SO OO S 0SS SO eSS S S PeS iii
‘T 4 List of Figures ® ® & & & & 0O O S 0SS OSSO P SO OO OSSO LSS Vi
Abstract ® S & O 0 O O OB S O OO OO O E S GO O E OSSO OO O E NS OO S0 eSS Vii
o] I. Scope Of Project .ceceeececcccocccccscncscoccns I-1
Introduction ® ® & & 0 ® 0 98 6 O OO S 0SSOSO e S OO O e OO ¢
Historical ® & 6 & & & O 0 4 5O OGO OO OO OO S OSSP O SO G 0 e e
v Y Review of Previous Requirementsc.c....

‘t' Objectives ® 6 0 00 000 000600 0000000080060 0000000
{:“:} ApproaCh ® 0 ¢ 90 5" 28000000000 ¢esatNssOSLOLSTTPSIOOE

:,,‘ TheSiS outline ® ® 0 ° 950 60 86000 E0S0EEN O EBEE NS -
h‘,‘
% II- Requirements ® 8 0 0 5 9 9 0 0 SO PSS L E 0 OO CH OSSOSO S II-l
. 4
'1_._0.“

'_‘,“»'\: Introduction ® & © & 6 O 9 5 C 0P OO S O OB S PSS OGS OSSO S II-l
A Local Requirementscccccccceccvacsesss II= 3
Y Air Force Requirementsccccceccecccecccec. II- 4

4

-

ded —'@ Capabilities ® ® ® 0 & ¢ 00000000000 O 0 LO S OGS e II-

5
User Interface .c..cceceeccccescacccncscsece 1I-7
Inter-user Communicationsceccececceee II= 7
55 Memory and File Managementccccccceees II- 8
e Error Handling and Recovery e.cccecsceceees II- 9
Device SUPPOrt ccccececccsconsccenssnsssss 1I-10

ig Multiuser SUPPOrXt ...ccccecccnccncccscccss II-
Ay,
¢

Design Approach .c...ccececececcccsscccccassasess I1I-12
Implementation ..ccccevccesccccoscsccccncces I1I-12
ki Microprocessor Considerationscec..... I1I-14
. SUMMALY eceocccccccncasosnscovscnccsssasscccsses IL1I-15

II11. Operating System's Design ..ccccccesccecncccsess III-1

Introduction ..ccecececcocccccccccsccccacess III- 1
BOOLSErap sccccccccescacccccocconcocccscossese LII- 2
Overall System Design ...cccccveccecsccceccees III- 4
6
6
8

Initialize Data Base ® ® & 8 & 5 0 00 SO S S s OB oD III-
oy Polling and Parsing of Command Line III-
T~ Determine Command TYPe .cccececcccsscscees III-

Validating Command #0606 ce0e 00000 0000000000000 III-ll
‘?- ExeCution Of Valid command ® 050 0080800000000 III—ll

Ly 3 .‘_-..' T e AR Y AN .s.\.--‘.‘.j
G A R S I e e B A O ST ORI

I DL "y LRI LR LW d W . Ru W Ao, Ty W W o N ot TR e . - L a¥ . Cav q o™ L]

o
\:“
-»
I -
"” C}Zn:.‘! System Command e 8 s 0 e 00000 e0 00 c0 00000000000 III-lz

2 LOog=in USEY ..ceveececccsvcccsncsavscnssss 1II~14

LOog-0ut USer ..ccecee-cccscoscsccassanssocsss 1II-16
T Help Command ...cccevceccccccccsccccscnces III-16
o User Command ..cceccevceoccscsscosccssssseacess III-18

BN Evaluation of AMOS DeSign .cccccccecececceee 1I1I-20
”' summary ® @ & 0 O 6 0 0 6 0 0 SO O SO O S OO0 e SO O 00O e 0o III-ZZ

IV. Memory Management of AMOS ..cccccceccsccccccss IV=1

ot
“"'s&.: Introduction ® @ 6 0 & O O S & O O O 0SSO S E S S OSSO 0 0o Iv-l
e AMOS Memory Allocation .cciceececccccccccces IV=2

- Status of Memory Partitions on AMOS....... IV-
f 5. Allocation Policy Used on AMOS .¢.cccecee. IV-
g Allocation on AMOS ...ccceevccccscocccnnses IV-
E Deallocation on AMOS ...ceevecccaceaccnaeas IV-

BB W W

Design of AMOS's Memory Management IV~

i3 Allocating the Job to Main Memory IV-
f‘ﬁ Deallocating the Job from Main Memory 1IV-

~N;m

Implementation of AMOS's Memory Management . IV- 7

@ Get File ..ceececcccccsccnscccccnscosncesss IV=09
§§ CheCk SPACEe .cceveccscecsssossssssannsecssas IV-10
gt Read File ..cccevcccscecnccccsscscacnneses 1IV=-12
N4 Deallocate SpPace .cccecceccescccccccscnnccesas 1IV-13

Summary ® ® 9 ¢ 5 9 0 O PP OB O OSSO 6 OO ST OO S B e e 0O e s O e IV-13
g; V. Secondary Memory Specifications ...ccececcocces V-1
o
.

4% INtroducCtion .cccceeecseccccccsscsccccacsnccas v-1
$ 8 Directory FOrMAt .ececccsocccsaccscsssccnnas V-1
Sector FOrMaAt ..ccceccevcccccsnsscnsssssssns V-4
SUMMAYY ccccecccrorscccsccsssnsccacasacsascsns V=5

”Eﬁ Vi. Implementation of the Operating Sysytem VI-

INtroduction cceeeccccccscvsccsscsnscsnccnnse VI
Main ccccceccescscesscccsscsoccncsssscccscsnce VI-
N Initialize Data BAS@ .ccecsesscscccccccnseas VI=
R Parse Command LiN€ ..cceceeecccccccascanness VI-

'(“i POll ® 6 06 006 000609 05 005 0060080 CV SO ESELEEDBEOSEL SO VI-

:‘é g Determine valid Command ® @ 3 5 & 0 0 0O 00 0B OO e o VI-
5

OB NNH- -

, - LOg=1in USEr .cceeeescccasccssccscssssasaces VI-9
‘ ’:$:' Log-out User ® ® & 0 9 0 0 5 0 O O T O S OO SSE DO e SN SN0 VI-ll
.. 4 Help User ® ® 6 & 5 ¢ 0 O ¢ 08 625 PSS 0SS G S0t a0 0 e VI-12

LW P o2 . PO T By W T e T T I R A S e G LN e R S R S SR SR
L T2 T~ S MR L 2 2 e S 2 S s N NN N S A s]

Lo .
‘alil’ ‘;$~“ System Change ® & ¢ 8 0 0 00 00 000 509 ° P00 S OO e VI-14
d Execute User command ® & & 5 0 0 ¢ 000 0P OO0 P o VI-16

3,; Validate User Command ..ccecccececccsccnsececs VI=17
~§ Execute COmMMANA .sccesccccsccssccscsccsncsees VI-18
'* BUild Message S e ec a0 o000 00O COCLROIOBOROEBRBOTREOEROEOEESOTSES VI-19
Error Handling AR R R E R NI I W I I NI I N VI-Zl
Static AnalysSiS .cccecccccccccecccccccscsnss VI=22
Summary € 0 0 0P OERIOCEOIELEOGESOEOGOEOIEOGEOOIOEOREOGODOROEOEONORGOCEOROES VI—25
Y
1 VII. Conclusions and Recommendationscccceceees VII-1
Ay

:,t% conCIuSion ® ® © ¢ 8 8 00 ¢ O 0O O OO O OO OO SO SO PO OO VII-l
34 RecommendatioOns cesecscccccsscscsccscssscsscse VII=3

"‘_‘e Testing ® ® & 0 & O 08 0O SO OB G OO OO OB O OO SO SO SO S0 VII-3
5 Assembly Coded Routines ..ccccecceeecceccss VII=-4
v Source Code Transfer e e 000000000 cs0ssc0vsee VII-S
3 Operational 28000 System c.ccccceceossccceces VII-6
Bibliography ® S & 8 06 0660 0 0 0 P08 S GO O OSSOSO OO O O s SO S S S SO e BIB-l
Appendix A: Initial Hardware Configuration A-1
Appendix B: AMOS Structure ChartsS ccceecececcccscee B-1
\ ‘i’ Appendix C: Process Descriptions for AMOS ..cccceee c-1
Appendix D: Data Dictionary for AMOS ..cccccccccces D-1
W Appendix E: AMOS Source COd€ .ccecsccccscccscssccns E-1
,:-* Appendix F: AMOS UserS' Guide s eecsscosenscesnscecon F-l
§ Appendix G: Hierarchical Structure of Design G-1

:‘il Vita ® © 0 8 08 0 000G S 6 OGSO E S OO0 OO0 LS00V NOLSOLLEPSEESEOOOTESS Vita-l

i‘;.
—
N
I"
.‘ .:
A P e g DA T AN * N N N T N T e T NN N A N DR I T R A R 1
(1 'n o, et P e -‘. a® ¢ OO '\ "I\ \. .\ N\ \..¢\ n‘.n\ / I \.n\.h~ \ . ‘. '..\. \~. :. ~:. "" s ,-.'_‘ PR A A - .'....'_ E“

NN List of Figures

Software Life Cycle-Waterfall ...cceceeeee II= 2
Execute Bootstrap Program cc.ccecececeeseces I1II- 3
Execute AMOS ® 6 © & 00" ¢ 0O G OO G PP LSOO O e e OO III-S
2
9

R 2% %
-
-t
[]
[

k.
-
-
-

!

Initialize Data Base eesessccsceveccssncseses 1II—
Parse Command Line @0 csecessc0s000 0000080000 III-

Ak &
[)
-
[
)

1l

2

3

4

5 Determine Valid Command ..ccccceecsescceces III=10

6 System Change ..cceececccccccccccssnsccaece I1II-13

7 LOg-in User @9 00 s000 0000000000000 00800 sBeEe III-lS
III- 8 LOG=0OUt USEr c.cvsoccesconsscsscnossccsccses LIII=17

9

0

1

2

1

2

3

-
Pl o,
- -
- -
-t
)

PPt o

Help USer ccccceccceccccoccccnccccencosass III=19
Execute User Command ..cccccecceccccccesse III-21
Get File .cccecctceccccenccccencssccnscaanae IV= 6
RUN ProCeSS .cecescecccsccsccnoscnccasassas IV- 8
Directory Byte Description ..ceeececceccccss V-1
Directory Entry Byte Description ...cceee. V-2
Sector Byte DescCription .cccceceeccccccacces V-4

5 ol ¥ g Rt
G
-
<L <
P

Latl

LA ¥
i Py

-

i - <
oy

T L
a0 S

FA

5 'h’g_'.:h
: teas
A
X
"s

gl
- .
Vi

o
<
3}5
& Sh) o e .’.'l‘ . s
' Abstract At ‘ JUP -
&
1
j A multiprogramming operating system, designated/"(AFIT)
; .
Multiprogramming Operating System (AMOS), for the AFIT
T Digital Engineering Laboratory was designed at the
Y
oy detailed 1level and fully implemented, except for the
assembly language routines. The requirements were
x‘t
il developed in the works of Yusko, Ross, and Huneycutt. ——
& This thesis effort was done in conjunction with thf/?
. effort of Lt. Paul E. Cruser.< This effort covers the
&.F‘
) detailed design and implementation of the overall system,
' the detailed design and implementation of the operating
- @ system memory manager, and the specifications for the
)
X secondary storage.
3
X
~:
n"'
; \
..*
J
é
A
~3
3 J
|
!
‘:-}a |
q o N |
% |
|

vii

ats
e O |
. - |
-
Bre oo
YOS
’ I. Scope of Project
ﬁf
“rd

’ -l*

Pyt Y

\ Introduction
s \
1 Ny o | |
53' The purpose of this project is to continue the design '
N and implementation of a multiprocessing operating ?nggmwﬁﬁ viil
iﬁq for sixteen-bit microcomputers. //EHI;M§6§éf;£ihéw system
5%% will be referred to as the AFIT Multiproramming Operating
" System (AMOS) (Ref. 1:1). The purpose of this chapter is
k% to give a brief overview of operating systems, to.outline
i;) requirements for AMOS that have been defined in the
- QES previous efforts by Ross (Ref. 4), Yusko (Ref. 5), and
»55 Huneycutt (Ref. 1), to outline the objectives of this
i; project, and to present the approach to obtain the stated
»ﬁg objectives.
‘cg One definition of an operating system (0/S) is "an
,‘% organized collection of systems or programs that acts as
™ an interface between machine hardware and users, providing
.Eg users with a set of facilities to simplify the design,
f§§ coding, debugging, and maintenance of programs while, at
;$$ the same time, controlling the allocation of resources to
“4: assure efficient operation.”" (Ref. 2:1,2) In other words,
Lﬂ the 0/S is a large software management program that acts
703 7o as an interface between the user and the computer system.
: .é '."t“'
o
.
- 1-1
* %

e Te-m "qa

» «

‘c'.‘-'v. T A AL L. _'.-‘-. RO S A RO \1.\ ..-..‘- o ~I\l \1"'. o $~ \.«-) ..-‘.-“2 0 ' R --\- h ‘1..‘.. VR TLPR T .n', AN
e " b 2 > 4 5 ?’ A bt L) . - { [} L a3 > >

& S - . - PIL BN S g/ i i i N R A N e S e L S R] - P - -~
<,
’1
-~ L
. Qfﬁ The computer system could include the hardware,
. application programs, and control.
§
o Historical
2 In the first generation of vacuum-tube hardware, the
L5
T . . .
5 procedure for the operating system, which ' =: nothing more
than a program loader, was: a loade reads in an
X assembler; the assembler assembles into abs .ute code user
) .
source programs and library routines; the assembled code
is written on tape or cards, and a loader is again used to
! read these into main storage; the absolute code of the
3
- program is then executed (Ref. 2:7). This meant that
“ there was only one job executed at a time.
<
ol
3 In the second generation of transistorized hardware,
ﬁ the operating system was developed into a sequential batch
L, processing operating system. The operating system made
% use of new data channels, interrupts and used auxiliary
5 storage efficiently (Ref. 2:9). This type of operating
‘ system still only allows one job to be executed at a time.
. Along with the integrated circuitry of the third
: generation came the multiprogramming and time-sharing
- methods that could be used to make an operating system
)
"' ’ . . .
-t more efficient (Ref. 2:12). Multiprogramming is based on
. the concept of concurrency; that is, more than one program
;ﬁ&. can be executing within the computer system at the same
‘ R
Y,
N
iy
. 1-2
i‘."l—'.'d','f e e e T A T T T N T .:.-._-.‘,a;_.'_-.,'.'.,'- T R "_.“_h‘_. _.‘_. -‘.;: ROy :.,~_' \'_.']

g - 4+ Q . . . - - Chdi .
-y L?, PO I DAL D R D A L I A A A) F I A TV N I AUt i It SV S S el

{ St N

* G

AN, time (Ref. 3:29). Since only one central processor is

used in this type of environment, only a single program

g; may be executing at a given instant in the central
2 processing unit (CPU), but to the users it seems as if all
2 the programs are executing at the same time. This is done
E with the use of input/output processing. Multiprogramming
? systems alternate the programs' usage of the CPU according
- to some policy. The operating system determines which
é program is ready for execution and then allocates the CPU
L for the program.
i Time-sharing systems are an attempt to give each user
'E a personal computer while efficiently wutilizing the
2 . resources of a relatively expencive machine. All user
‘Ea interactions on a time-sharing system are done through
N
3 on-line terminals. Two requirements for a time-sharing
- system are 1) the response time has to be maintained at
‘{ the appropriate level of the human attention span and 2)
Aé the appearance of unrestricted access is presented to the
; user (Ref. 3:29).
'i The concepts of multiprogramming and time-sharing are
?5 complementary. Most minicomputer systems couple
é multiprogramming capabilities with an interactive
o time-sharing capability (Ref. 3:30). An example of such
ﬁ an operating system is UNIX (Ref. 20).
N
LY

There are many types of operating systems on the

AL

- .fﬂ- market today for all sizes of computers. They range from

Pt e

('.'_'.._'.'."‘."_\'.\ T S I T T T T L L TR T TN U RSP AL SN

Pl
\.' -‘:l .‘u .‘t _'. :.

*
!

LA '.‘_-‘,:’

.'v{.'a‘

P
A

A P A
QAL

[s
[

ARARA

(4
S

XA
oo o0 00

A _-.',u.. .

2}
.”o

8
. .y e P o . T e T g vy T e e - + P « e - . LR ot E— -
W R AN S A S SR SN SR S AR N e T e N

.‘ lﬁ.l\)

the simple batch to the complex network. These operating
systems are more complex than the original ones and will
become more complex in the future when greater needs are

pressed on the operating system.

Review of Previous Requirements

This thesis effort is a follow-on to three previous
thesis efforts that were under the direction of Professor
Gary B. Lamont. Ross (Ref. 4) and Yusko (Ref. 5) were
concerned with the upper level design of the operating
system. Huneycutt (Ref. 1) was concerned with design and
implementation of the file management of the operating
system.

The previous requirements (given by Ross, Yusko, and
Huneycutt) are followed in the final design and initial
implementation of the operating system. Eight
requirements for AMOS that are the goals for the initial

implementation are:

1. Multiuser support for at least four concurrent
users.

2. Friendly user interface.

3. Interuser communication.

4. Fair allocation of system resources.

5. Meaningful error diagnostics.

LA AL L At Ay A A P PAELELEL PR UL L AL CR A \'-‘('W?TC'T.'I'"‘.'i\'l"".'.'.‘S‘.'-'.‘-'.'T

-.\
:
5
N4
Aoy
{ ' PR
L .
N RSN 6. Recovery routine.
~ 7. Minimal device/user utility support (Ref 1:11).
A
:: 8. Provide a general purpose configurable O/S with
¢
:{ full documentation to aid in teaching of 0/S
- - courses.
"
]
oS
-2 Although the Intel 8086 microprocessor was initially
§: chosen (Ref. 4,5), the 28000 was selected (Ref. 1) because

it offered the desired support that was not provided by

oZX:

the 8080. The Z8000 is also capable of discerning between

ﬂ system and user tasks and can control the operations being
é performed for the users (Ref. 1:16). The choice of the
- ‘:b 28000 will be covered more thoroughly in the requirements
o chapter (Chapter 2).

t‘ The implementation of AMOS will be written mostly in
% the C language. Hardware dependent routines will be
fﬁ written in the 28000 Assembly language. The reasons for
,? using C are:

)

'a 1. 1t is a structured language.

zé 2. There is C source code for an existing operating
-f system (UNIX) (Ref. 20) that is readily available
(% to research.

iﬁ 3. The C language 1is less restrictive than other
ES high~-level languages that have an available
i % {?‘ compiler.

3

-
L}
w

-
o !

-
v

P I R T ST R gy |
af.l'l..ﬁl'.-f‘..f f\f\'\\

NI

oteley
a L .

llll."
s s m'e s

O X'

.‘1;"“
t

: “»
=4

The modules that are to be written in assembly
language will have to be rewritten in the new host

computer's assembly language.

Objectives

The objective of this project is to design and
implement a multiprogramming operating system for a
sixteen-bit microprocessor. Top-down methodology is the
main tool for design and implementation. The
implementation of AMOS will be done in the C language, as
stated earlier, and will avoid hardware configuration
dependency (enhance portability). The only hardware

dependent modules are those written in assembly language.

Aggroach

The project started with a literature search and review
to obtain information on operating systems and their
development. The requirements, for the most part are
taken from References 1, 4, and 5. The structure of AMOS
will be modular to facilitate testing, maintenance, and
portability.

AMOS will be initially implemented on the Multibus

28000 system (using the Z8002 microprocessor) from

DARA MR

Advanced Micro Devices (AMD). The Z8002 system contains a

% non-seqmented CPU card, a multi-port serial I/0 card, 128K
)
2 of main memory, a floppy disk controller, a clock/timer
L4
-7 card, and a mainframe. This is the initial hardware that
N is present in the 1lab (Room 67, Building 640). More
?i details on the 28002 is contained in Appendix A.
X Thesis Qutline
5
53
1y The rest of the chapters will cover the following
;ﬂ subjects:
By
b\ @ 1. Requirements for AMOS
fg 2. Design of AaMOS
;1 3. Design and Implementation of AMOS Memory Manager
y 4. Specifications of Secondary Memory
N 5. Implementation of AMOS
= 6. Conclusion and Recommendations
2 Requirements for AMOS, Design of AMOS, and
Y
3} Implementation of AMOS are duplicated in Lt. Paul E.
)
A Cruser's thesis document. All of the appendices are also
>, duplicated.
]
&
s o
A
::'
fend
v 1-7
N
R T N T A L e N NP N S U LN e et e ATt Nt e e e A

IO .) "‘-‘n .'..‘1..“‘ “ \. MRS S) - 4 4
e e e e T T a Y P m e {M XN A%

: 1:: \ff' I1I. Requirements

N

o Introduction

3y

4

)‘ The development cycle of a software project begins
;; with the requirements analysis (Ref 9:198). The broad
§§ requirements for this project's operating system can be
r; stated in one sentence. The operating system is to be a
:g multiprogramming operating system for a sixteen-bit
:é microprocessor computer system that is easily changed and
2 is machine dependent only at the lowest levels. The next
7ﬁ phases (Ref. 9: 199) of the software development cycle

' are:

ﬁi 1. Specifications/Requirements
"]
byt 2. Design
a. Structural design
)
,3 b. Detailed design (algorithms)
‘.N
at
2 3. Implementation/Coding
o, 4. Testing
S
o . .
’% S. Operation/Maintenance
o
,ﬁ The steps are shown graphically in Figure II-1 (Ref.
\ : 11: 13). Although the testing is listed as the fourth
*
:: phase, it should be done throughout the development cycle.
NS
N v
Lo
! *l
¥
- II-1
v
N
~J' ..~ o e 'o \ " . .. -» -',-{'-.. ,‘ '.’;.’_'.ﬂ.'_'\. _'.'..f‘.-“.v:.‘l'_:‘_., SRR .".4.'...'.\' ~":-;"l-\- L) -'..' e .\-’\ \..%..'\)¢‘ .. -‘\ LA\ -‘. -

o L R Ve ® o LB k-o PRI e i B e bee 80 PACH AU PalhACce dep Fou B Ve A Iy Béy Va N a W d (S, n T, RS i

R
t."“.’ "n

ot Systenms
Analysis

Fontstih

Structural
and Detailed
< Design -

v Implement-
ation/Coding

Testing

K EE)

o,

v
a3

Operation/
Maintenance

& PP

o

o

-
-
-

A e

-

Figure II-1 Software Life Cycle-Waterfall

P
¢ o N N T I 0 1

I1-2

e 4

AU S XS Y AR Y S ST S Y PR P W s T S L L A O ~ ._x_-.__d
= m 'I' ’m{tk NG ._\}L\ _\"\\ Tt -..'~'~.‘_\.'(‘ _* SRR

by o
o "\'l:)' In this chapter, the requirements for this project's
’ operating system will be explained with most of the
:S§ specifications included. The requirements phase defines an
:“’:(acceptable solution to the problem. During the
: requirements phase, the designer must understand exactly
§§: what the user desires from the system. If the
Sﬁ requirements are incorrect and an error is not detected
et until later in the design phase or coding phase, then the
dyu
?.%?.' correction of the error can take more time and effort.
"': This is why the requirements phase is one of the most
g: valuable of the developmental phases of any software
::\, project, although all of them need to work together to
':.: @ produce the end result.
=
=Y Local Requirements
O]
XVl
g‘.; Other than fulfilling the requirements for some
o students' project, this operating system can be used in
i___ various ways. It could be used to teach courses in the
.{-:" areas of software engineering, operating systems, computer
‘\'ﬁ architecture, and computer languages. This operating
system could be used on different computers for different
:. courses and could possibly provide more computer services
3-2'2: that would be less costly than an additional minicomputer
(for example, the VAX 11/780 on the first floor of
::; ?" Building 640). Of course, this would be conditional on

e W e B A L L NNl W, e BRS “ e lnf W P W W T VW WuN e &t a¥a LS AN Y " a ¥ o ORI LA

s
T
%
Y o .
] ;:p, keeping the cost of the computer system under $10,000

p
N (Ref. 5: 11).
3
!
3
s Air Force Requirements
;j As was stated (Ref. 1: 10), the Microcomputer
& Technology Branch of the Air Force Data Systems Design
» Center at Gunter AFB, Alabama was created to supervise the
sﬁ production and acquisition of microcomputer software.
% This project can be used to serve two beneficial roles:

1) it can give insight to Air Force Acquisition personnel
N
:ﬁ to correctly specify the required software for
’ n microcomputers (Ref. 1l: 10) and 2) it can provide a fully
> documented operating system that can be developed into a
o useful tool which the Air Force, as well as AFIT, would be
N able to utilize. This documentation consists of structure
ié charts, process definitions, data flows, source code
L
é comments, and a users' guide which are located in
4
Appendices B, C, D, E, and F respectively.
&
N
::g' Capabilities
>t
4 The required capabilities for the operating system
;' have already been developed (Ref. 1, 4, 5). They are used
$ as the end goals for the completed and running operating
P L
2N system and are listed as follows:

: .
‘
N
L

I11-4

W I AN A I SRR IRl Lo '(".‘_.I\'f\i\f“'q“'-\-." L

o en A Y o 424 ¢l o 2% pllg - Pin pa Reaian T e - A A Ryt) SRR R R VLD S A A A S P

s

N
AN
« e}
¢ "\' n(\ !
“ y) ’-‘ng‘
ig; 1. Multiuser Support
L]
t:& 2. "Friendly" User Interface
L
1) -
! 3. Communications between Users
‘&& 4. Resource Management System
N
g, 5. Meaningful Error Diagnostics
N
X and Recovery Procedures
f"J 6. Device and User Support
7 2
L
N These required capabilities are also considered as
¥ the basic requirements for the design of the operating
z: system. Each of these will be explained in the rest of
& @ this chapter.
Y
£,
&g Multiuser Support
R Y
La
X,

One of the specifications that are given for this
-fﬁ operating system is that it is to be multiprogramming. %
- The definition given by Madnick and Donovan (Ref. 7) is "a |
term given to a system that may have several processes in

'states of execution' at the same time (a process can be

Cd
'.‘l.l.t

. .
ot
DA
2t

in a state of execution and not be executing; that is,

0

"‘ -

some intermediate results have been computed but the

)

- &

¥

processor is not currently working on the process)" (Ref.

s

7: 7).

3
|
) 4

}I‘l

0
e
2V

)

"ol
00
Y

o P

g Vﬁ} Multiprogramming is used in an environment that will
%; handle concurrent users (as does the VAX 11/780 that was
é: mentioned earlier). The first required capability,
'z multiuser support, will require the design of a
?& multiprogramming environment for the operating system.

f; For this operating system, the support of a minimum
= of four users has been given as the multiuser requirement
§% for the implementation. The maximum number of concurrent
-; users that can use the system will depend on three
H hardware constraints: 1) the number of serial and
}ﬁ parallel I1/0 ports that can be used for Cathode-Ray Tube
Eg consoles (CRTs), 2) the memory constraints that are built
* ‘;b into the operating system's data base, and 3) the size of
,i J main memory that is allotted for the users.

f? The design of the operating system will be for a
” multiuser environment of approximately eight concurrent
ﬁ‘ users. The initial coding and implementation will be for
;3 four concurrent users and will be easily upgradable to
= five, and up to the maximum of eight, users. The
;g upgrading process will be discussed in detail later. The
': initial implementation of four users will be an adequate
- test bed for the multiprogramming requirement by providing
:3 various CPU and 1/0 bound processes which would test out
; the software (Ref. 5: 11).

;. T

"- e ‘-:.

ey

e N N NN N N AT AT

x

g

ALt

>y
w4l

L

User Interface

The user interface has become an important aspect of
any operating system. It is essential to provide a
"friendly" user interface which can be utilized by users
with differing computer skills and backgrounds. The user
should be able to easily learn how to operate the system.
The "friendly" user interface of any operating system is
characterized by three qualities: 1) ease of use 2)
tolerance of user errors and 3) minimization of user error
opportunities (Ref. 6: 270-273). The operating system
will work efficiently with an experienced user and still
be able to assist a novice user in learning how to operate
the system (Ref 5:12). Documentation for the user will

greatly help facilitate the learning process.

Inter-User Communication

The inter-user communications of the operating system
can be done using a mail routine, public files, or both.
With a mail routine, one user would be able to set up a
file to send to another user, while setting a mail flag
informing the second user of mail. By using a public file
system, any user can declare a file as public so that

anyone can read, 1link, or 1list that file. The one

restriction for this method is no alteration (erase,

», S T T Y e N N T R . N L N Y L e M VN O m e L (N e Sy A e N AN T eV T T N3 D T T3 T s m

5
o]
.-'.
N
‘ g
ﬁ:§ »E
e \" 3 . . .
: - overwrite, etc.) could be done to a public file, except by
jtg the original user. These two, mail routine and public
-
e files, can be combined in the system. The mail routine
Y
*
S can be used exclusively for messages, and the public file
;;2 system can be used for program files.
:? The mail routine and the public file system are
oy
solutions for the design. The requirements for the
o
.%3 system's inter-user communications would be met by using
ﬁa- one or both of them.
A
2
by Memory and File Management
1
e
Gza Memory and file management is concerned with four
\ *) 13 3
fﬁ basic functions (Ref. 7:105) :
>
o
150
] 1. Keeping track of the status of each location of
‘% main memory.
;ﬁ 2. Determining a policy for memory allocation.
N 3. Allocation technique.
DA
) 4. Deallocation technique.
~.
5
B
A The status of each location of primary memory will be
..J,&:
I either allocated or unallocated. Allocated means that the
hg' memory location is being used for a job. Unallocated
i - means that the space is free for any incoming jobs.
ORI
P
.
d q. .‘:

N
Y
SIS
j{; ié;l The policies for memory allocation will be influenced
‘g. greatly by the following three constraints: 1) the
'é; maximum number of Jjuvhs allowed on the system at a time,
:f; 2) the desired turn-around time for average jobs (e.q.
) shared program modules), and 3) the size of jobs versus
ti the size of main memory (i.e. can all jobs fit into the
= allotted working area). A few examples of memory
ié allocation policies are partitioned memory, paged memory,
%i. demand-paged memory, and segmented memory (Ref. 7: 106).
! The latter two provide a virtual memory feature that will
iﬁ be discussed later.
;x Allocation and deallocation techniques depend upon
e (53 the policy selected for memory management. If paged
jg . memory management is selected the allocation technique
E; will have to place the entire job into main memory into a
:} series of blocks. When the job is completed the job needs
i to be removed from main memory and the former allocated
-i area will be returned into free. The programs that are

active in memory need to have protection, which is

P4

accomplished by the allocation technique.

Error Handling and Recovery

- The operating system should have the ability to
jt' handle and recover from system and user errors. Not only
it T
O should it handle and recover from the errors, it should
N
- ’.'

200

o

e N e e e
ATV IS e T U v I DN

. . sadpte < g " - "
L AR ML I, A A=A SR A B AR AN AR N AR A oD R I . P AR RN SN I G L NI R R LR

L

s _

DA

5% o also provide informative diagnostics that would help the
5 user better understand the error. There are two types of
EE user programming errors: fatal and non-fatal. These two
= types of wuser programming errors can be handled by
‘5 displaying error messages (the diagnostics) and returning
3 to the operating system's control. The user could also
o have format errors with the command language. This would
;% simply be handled by giving the user the correct format
_ﬁ for that particular command as the diagnostics.

) The system can be modified for more users, for a
é different management routine, or for a different 16-bit
f microprocessor. There should be error detection
. G capabilities for each of the new system modifications.
): This type of error detection would be useful for the
:ﬁ person(s) trying to complete the modification.

»,

é: Device Support

"8

B

The device support will be handled by the

)E Input/Output (I/0) Manager. These devices can be
{: described as "the computer system's means of communicating
f with the world outside of ©primary memory. This
gg communication may be with humans external to the computer
E system or with other parts of the system (such as tapes,
‘j ™~ computer cards, or disks) not directly accessible by most
‘3 W of the instructions of the central processor" (Ref. 10:
N

N

169). The four requirements for the I/0 Manager (Ref. 5:

15) are the following:

1. Information transferral between users and 1/0
devices

2. Conversion of the user's view of 1I/0 device
(virtual I/0) to physical characteristics

3. Sharing of 1/0 drivers

4. 1I/0 device error recovery

There are three major techniques used for managing and
allocating I/0 devices: 1) dedicated, 2) shared, and 3)
virtual (Ref. 7: 284). The third requirement would be
implemented using a shared devices technique and a virtual
devices technique. The shared devices technique would
allow such devices as disks, drums, and most other Direct
Access Storage Device (DASD) to be shared concurrently by
several processes (Ref. 5: 284). Slow I1/0 devices (such
as teletypes, printers, and card readers) would have to
use the virtual device technique (for example, a SPOOLing
routine) in order to convert them into shared devices

(Ref. 5: 285).

............

......................

L P T N LI Y AN EPIREPARSP AN
.......

-
IS

)
l &
A

i N)
LA

“).t
xa
.'n‘ ¥ ..,

.
.

Design Approach

As stated in the first chapter, the top-down approach
will be used for the most part in designing of the
operating system. The break from the top-down methodology
will be when an algorithm that is used in a lower level
can be designed and written before that level has been

reached.

Implementing Language

In the past, operating systems were written
exclusively in assembly language (Ref. 8). The two main
reasons are: 1) a well written and optimized assembly code
is the fastest-executing code available and 2) the code
produced using assembly code is the most compact, taking
up the least amount of memory (Ref..l: 13). With the cost
of memory going down, the second reason 1is not as
critical, since more memory can be purchased. With the
use of structured designing (such as the top-down
approach), the use of structured languages can be written
to follow the physical form of the design used.

In the design of the operating system, the use of a
high-level structured language will be wused for the

control structures, and the assembly language of the

microprocessor will be wused in those areas where

.l o performance needs to be optimal (such as the device
2& drivers). Two examples that have used this type of hybrid
;g design are: 1) UNIX, written in the C language and 2) UCSD
2& Pascal, written in Pascal (Ref. 1: 14).

? One of the specifications for this project's
&

R operating system is portability. Since the bulk of the
operating system will be written in the C language, it can

be transferred and compiled easily. The assembly language

i@ routines will need to be rewritten in the new

ae

ifJ microprocessor's assembly language.

iﬁ As stated in the first chapter, the C language was

:;é chosen as the high-level language that would be used in

X

eee @ the final implementation, with the assembly language used

'3f T for some of the machine dependent routines that cannot be

EE handled efficiently using the C language.

.{~ The C 1language is readily available at AFIT. A

Eé cross-compiler from C to 28000 assembly code is available

;E on the VAX 11/780 located in the Digital Engineering Lab.

-:J A C compiler for the AMD 28000 processor is being acquired

i&; from AMD. When this compiler is received, it will be used

.Eg to compile the C portion of the operating system. A

}t& Pascal compiler is available but C was chosen because it

}Eé is less restrictive (Ref 1: 15).

ol

3 ‘
£ |
i \.: R |
3 \-‘.'.'

p:

P P T S e e | \.".-.- LI ‘.h‘\‘l'qq
SRGAC I RO, PR Tt b St G L S ORI AN A

- .‘ l.‘

e

<

oy T Microprocessor Consideration

o

gtx The AMD 28000 microprocessor was selected from an
L extensive study with three other 16-bit microprocessors
;f; (Intel 8086, Motorolla 68000, and DEC LSI-11/23). The
o

;:ﬁ LSI-11/23 was not considered for this project as a target
2 device (Ref 1:16).

‘3& The amount of hardware support offered by the
\..l

1l

g microprocessor was important in the selection of the
P n-«'..'

o target device. The following are the desired hardware
'i; supports that the 28000 offers (Ref 1:17):

N .l‘

:.-:1

o

Restriction of CPU access.

6

iﬁ 2. Restriction of memory access.
%% 3. Memory mapping and program relocation.
?f 4. Sharing of memory.

ﬁﬁ 5. Context switching support.

%ﬁ 6. I1/0 interrupt support.
€§§ For CPU access restriction the Z8000 was the only one
-Eé to differentiate between normal and system modes with
jf restriction of the use of 1I/0 instructions, control
;gé registers manipulation, and the HALT instruction. All the
“:z microprocessors require external circuitry to control
?;_ - access to memory, but the 28000 provides instructions for
ié '}gJ use with the memory segmentation. When an interrupt is
s
R

;2 I11-14

7 s

o
¢

L bt

Ve " ot D da S PR A i Pie F 4 Yot Jodn Jhda B Sanian lyt RarA B in DAy DA DT R4 MarDAcing Jrin oy Ran DAy SaCRAn iy ey it LAl tre el A AR

e T et At o o e A e et At A e 2t A A A AR AT 2T AT o o

received, the 28000 has block move instructions for

facilitating the storage of the entire instruction set,
while the other microprocessors only store part of the
machine state. The 28000 allows the interrupt vector
table to be located anywhere in memory, but all the
microprocessors react in the same way to interrupts (Ref

1: 21).

Summary

The implementing language and the microprocessor were
not requirements for the operating system. These two have
been presented because they were previously selected for
initial implementation (Ref. 1).

For any system to be designed correctly, the designer
must completely understand what the user desires from the
system. A successful completion of the requirement phase
will enable the designer to provide the user with the
necessary results. Since the operating system is a
complex piece of software, the requirement phase is more
important than in less complex pieces of software. This
chapter presented the requirements for AMOS that were
defined in previous thesis efforts.

The C programming language was previously selected

(Ref 1: 22) for its clarity, power, and availability. For

these same resons and for the availability of UNIX C

B T T R T L L L s N e T R M T T VeV T T T TR T TR T T T T SRR 7
o

e

~

L

O A

et T source code, C was selected for this effort.

4.:: The AMD Z8000 microprocessor was chosen for the
K 7a

}:f initial implementation. The 28000 enables the operating
L system to:

%A

X&

s 1. Easily handle main memory.

]

£

e 2. Differentiate between system and user tasks.

, , 3. Efficiently handle interrupts.

e

" The testing requirements for AMOS are module testing,
~
-::q_f system testing, and acceptance testing. Module testing
150Y

: 5 includes the testing both the structure of individual
R

@ modules and the integration between modules. System
" Tt . . 3 . K3 0] . .
414 testing is the validation of the system to it's initial
-

Ay

Cd

4?3. objectives (Ref. 25: 232). Acceptance testing is the
o

‘ validation of the system to it's user requirements (Ref.
Ay

f; 25: 232).
\
o

%

. |
'\

(X |
\:‘.

35
SRR

o o

R

“» ‘

) ‘:.':!‘
3 e

o
AN

“l

e II-16

WA ST I LA oW N o KEF iV a ' Vol el S ui ey “aie LA 0 R U A A A R LR P A .'.'.‘

AYE
T
.
o
e <
-?5 f?f II1. Operating System's Design
‘el %Y
-‘b'
\l
1_..:
ey .
= Introduction
-
9"
12 The purpose of this chapter 1is to present the
')
§’ detailed design of the AFIT Multiprogramming Operating
. System (AMOS).
%
5@ The detailed design of this multiprogramming
Y 4
% operating system was done using a top-down methodology.
- When using a top-down approach, a well structured design
ol
N4
i‘é is possible. This top-down design approach is done by
:ﬂ making the upper-level modules call only 1lower-level
. Gﬁ) modules. This will allow easier modification and
'{; understanding. These are two requirements that were
N
-{3 previously stated.
- This operating system was designed with a structured
e
‘ﬁﬁ programming language in mind, such as the C language which
\ \
A
A was selected. By using a well known and widely used
, programming language for operating systems, a portable
*I
{S system is obtained. The only modules that would need to
~
Vfﬁ be changed would be the low-level driver routines that
o will be written in assembly language. The need for this
) operating system to be portable was previously stated in
q
‘> the requirements chapter.
:ﬁ\ gk} The tool used in the design of AMOS is the structure
E; AV
i
\'.:
' ITI-1

Ay chart. The structure chart was chosen because as the

design is refined, new modules are identified and added to
the chart (Ref. 11:60). The 1initial version of the
structure chart is derived from the analysis tool called a
data flow diagram (DFD) (Ref. 11: 61). The initial
structure chart for AMOS was derived from the DFDs
presented by Reference 4. The DFDs were not included in
this text, because the structure charts can be presented
apart from the DFDs and still be complete in its

presentation of the operating systems structure.

Bootstrap
‘;B After the computer system is powered-on, the
operating system should be loaded into main memory. The
operating system is then executed. This is done using a
bootstrap program (See Figure II1-1). The Bootstrap does
not meet any requirements, but 1is necessary for the
operating system to be loaded and executed in a disk
environment. Two ways that the bootstrap program can be

executed are:

)

N
N

’L

N

LNl g A J'*.V.'.r.f".fr_"."."_".'_r_(.f.._l?'-.7:-‘7'_7_t_?_v.-"T_v.V.r.ry_o_-.—:..-. ."j
e lw (S AR A . . AN

' |

~

y) s

IO,

CORR AN S Execute

Bootstrap
% Program

|
|
» 1.0 "
|

“~

~
«
x

% AMOS AMOS |
+ o——

ﬁ Load AMOS Execute
o Into Memory AMOS

) Q 1.1 1.2

» .l » .l .'
L Y s

Figure III-1 Execute Bootstrap Program

A

e,

|
III-3 |

e
»

RN O o L L R I -

- v mte P P I T D, L IR R I
- C RN L VR ICRR A A U P T T L T AT T T T T Tt e N e e e _.d
o) :I‘/:{:A.J.JA_{L{JL(' R S N A A R R P A SV AR AP P U TR PRV PR TS G S TR S ST S

. .‘. '
. ..'..'.

1. The use of a low level function on the system's

monitor. For example, on the TT-10 CP/M systems in
the Digital Engineering Lab, the letter C which is
entered by the user, initiates a monitor function
that bootstraps the operating system. (Ref. 23)

2. The processor would be held in a RESET state
while the disk controller independently loads a small
segment of code from the disk. This code is the

bootstrap program and is executed. (Ref. 1l: 28)

Overall System Design

The system design was separated into the following

three parts:

1. Intialization of Data Base.
2. Polling and parsing of the command.

3. Determination of the command type.

The initialization of the Data Base 1is to be
performed only once during the execution of AMOS. The
Data Base is the necessary information that the operating
system requires in order to function properly. The
polling and parsing of the command 1line and the
determination of the command is in a infinite loop (See

Figure I1I-2).

Y t‘-;-‘...:_'- WS - ..:_' Sy -.’. \: ‘.'.'.:_\' SR %: " ‘-: RO WY \-5'-_.":-\:-\‘\" "_s*(\.-\.'."}.'-':.‘\‘:\
¥ A 4 N ol -

N AT C A G i AN e a

AMOS
Execute
AMOS
1.2
AMOS Global / Command
Variables +4—" rable
——=======0 o
_J _
(™)
'y
Command
Table
v &]) +
Initialize Parse Determine
Command Valid
Data Base Line Command
2. 1.2.2 1.2.3

Figure III-2 Execute AMOS

St
K

7

s s
e
R 4

LA
L.

*y
PP

s,

Initialize Data Base

The operating system has its own set of data
structures that it alone can access and control. For
example, it needs structures that will give the status of
processes (process control blocks or PCBs). When a
computer system 1is powered-on, the main memory is not
automatically cleared and may contain unwanted "garbage."
When the data base is loaded into the main memory, it
needs to be initially set to predetermined values (See
Figure II1-3). Some of these values can be changed during
the operation of the operating system, while others can
only be changed by in the source code of the operating

system.

Polling and Parsing of Command Line

After the operating system is read into main memory,
a polling routine is then executed checking the various
ports for incoming commands. The polling routine will
satisfy the user "friendly" environment. When a command
line is received, it is parsed, or broken apart, into the
various parameters. For example, for the RUN command, the
command line is parsed into the command and file name.

These various parameters make up the command table. This

command table 1is used when checking the validity of

Y it o e Jhe s St A+ oA SN R o RS RuSL E N K A N S RO

LI)
1]
*
L]
»
»!

L
'

A4
Y

< ‘ AMOS Global
{ l Variables

] Initialize
) Data Base
1.2.1

Data Base Data Base

%nformation Information
y O
2

b~
(i AMOS ™ Globa
N Variables
XA
~

Retrieve Data
Base .
o7 Information Variables
&

'” @ 1.2.1.1 1.2.1.2

Initialize

: Figure III-3 1Initialize Data Base

5

]
>

NN
IR

Che 3
TRV RV RV)
R
Je

a
2 s

K
.
o’

K

]

Tl e Nl aTa L2l B AR A Sl Rl Wl Ml N 1 '-‘_. .- Tt . e Ve "..'_-_

Chtw e g An=iig iy iy St A o A o P s v gV, B At A it I S R S T T e et e e e '~:1

-

I

S STV A . .

ROEEEN a requested command and 1in executing the command (See

i

'~ Figure III-4).

"\\

.i

A

N Determine Command Type

?ﬁ The command will be one of the following types:

1REY “

- 1. User log-in. f

X |
et)

i 2. User log-out. |

?; 3. Help user.

A o4

N 4. User commands. |

R |

N 5. Systems commands.

‘v:\'.' !

M (s

j: C The first two command types are canned routines,

e ‘

wl which means execution of these are similar for each !

- i
) request. The latter three can vary for separate requests

:ﬁz having different parameters.

)

Q The user is attempted to be logged-in. If the user

< is found to be already 1logged-on, then one of the

o remaining four command types is performed. If the command

fj line does not follow the defined syntactical format, an

f‘ error handling routine is called. After the error routine

5f is completed, control is returned to the main body of the

- system (See Figure III-5).

o e

Y

. "\

o

]

...... T T T m T s

7
Ay

A {0

% (. T
Command
=~ &Table
Parse Command
Line
1.2.2

Command
Ly < Table

r)

ﬁ r—) g\ Command ?
Line
Portno Portno nglugznd
0 ¢ , { H

Poll Terminal Process Read Command Build Parse
Ports Scheduler Line Table
1.2.2.1 1.2.3.5.2.2 1.2.2.2 1.2.2.3

Figure III-4 Parse Command Line

2
","'
2%’

.
’

XX N
LA .

T
,"'a.‘ "" “‘

3

A 7 ol
.' . . . r
X

‘e a"a*a" . YLt w e ta "w"a

Command
Table

Determine
Valid
Command

1.2.3

9

Syntax Error
e >

<—LPortno O
y gommand Tabli
[f———J)
0)
ommand
Portno able gggﬁznd
y ' y
Log-in Help Execute User
User User Command
1.2.3.1 1.2.3.3 1.2.3.5
¥ T
Log-out System
User Change
1.2.3.2 1.2.3.4

Figure III-5 Determine Valid Command

Notes <::)

is a connector to the Build Error Message
Module

Ry -

”

as
DA

P
I‘l_‘n'r'a b

=

validating Command

When determining the command type, user log-in, user
log=-out, and help user are validated. User and system
commands have certain parameters that must be verified
before execution.

The file name and username are the parameters that
are verified for user commands. The requested file 1is
checked to see if it is located in secondary memory (e.g.
disk). If the requested file is located in secondary
memory, then the user name for the file is checked against
the user's username to verify that it is a legal owner of
the file. This design will allow for public domain
filing. Public domain filing would allow any file to be
accessed by any user that is allowed on the system.

The validation of system commands is done by checking
if the user requesting a system change is the 'Superuser’'.
The 'Superuser' is the user authorized to perform system
changes. The 'Superuser's username and password should
only known by those individuals authorized for system

access.

Execution of Valid Command

This module will ensure the use of a multiprogramming

environment. This is done by having the System, Log-in,

"\' _ Log=-out, and Help commands to be executed without waiting

= and by having the user commands wait 1in the process

‘:':." queues.

S0

3

*}: System Command

":' The system command is a special command that cannot

s be used by any user logged onto the system. It should

.}1 only be executed by the 'Superuser.' This 'Superuser' has

d

* a designated username and password, as do other users. 4
::::: The difference between the 'Superuser' and other users is :
‘S_'. the username for the 'Superuser' is part of the original 1
- @ source code. The password for the 'Superuser' should only |
‘}‘:) be known by those designated individuals that will have

:3 authority over the computer system. The password for the

"." 'Superuser' should be changed frequently to avoid any

:::::'- tampering by individuals that determine the password code.

\: The design of the execution of the system command is |
,""‘ shown in Figure III-6. The authority of the user is

ﬂ" verified by checking to see 1if the user 1is the

‘Z: 'Superuser.'’ If the user is not the 'Superuser,' then a

'i".' unauthorized user message 1is sent to the user. 1f

‘_; validation is completed and the user is authorized to use

_,: the command, then the system is configured based on the

?‘- command. To configure the system, a menu is sent to show

‘:._. ﬁ\‘ the options the user has to choose, along with a prompt to

5

e

Command

System

Change
1.2.3'4

—

g

LR RN,
XA X 0

Portno's
Username
([
Superuser's
Auth./ Username
Unauth.
User
3
Verify
Authority
1.2.3.4.1

P
Command
Table

‘é

Configure

System
1.2.}!4.2

-
LA XY

‘D

i

Ry Lol
I

.ﬁ;ﬁ p‘.'lf..l‘ ~

ERIE LS e

s S 8, .'b ".

Figure III-6 System Change

input the information. When the required information is
input by the user, the system changes are made and the

system is configured to the new data.

Log-in User

Before the user can do anything with an operating
system that uses usernames and passwords, the user must
log onto the system. In the 3lesign, to log-in a user the

following steps are to be taken (See Figure II1I-7):

1. The wuser inputs username and password when
prompted.

2. The username 1is checked against the 1list of
usernames that can access the system. If it is not
in the 1list, then the user is not logged into the
system. If it 1is on the 1list, the password
associated with the username in the list is checked
against the password input by the user. 1If it is not
the same password, then the user is not logged into
the system.

3. The user parameters are initialized to log-in the

user and a logged-in message is sent to the user.

I1I-14

v
LR AN

)

Ay,

P

e
.

.

Portno

Log-in
User

1.2.3.1

Portno

Parameters

Set Up User

1.2.3.1.1

LLogged-in

Build

Message
102.3.1.2

I P .".- ...'. - e ‘.--.
N \ .'kf.‘fni.‘f.:i.-_’.&(‘ 'P._{s.'

-..
Tl RIS IR - W T e e e e e e T . .
SRR LA IR VI T T PV Y WA TP, At e At

Figure III-7? Log-in User

A

.

III-15

BRI S CERT 1

. e, .-._.‘....__v~ '..‘.',' '-..‘.....\.‘._

R Il AR SR R A g A A I R A D e A R N SN A R |

IR LB 3 RarpALS L M4 4 N4 st 4
7

o

s." 8

A SRS

b Log-out User

‘;i An importance of logging-off of a system is the
f3 freeing of a terminal which can be used by another user.
i: Logging-off tells the system that you do not need to do
;é any more operations and are freeing the allocated
o workspace, terminal, and any other devices. 1In the design
\‘i of the execution of the 1log-out command, the user
,;3 parameters are cleared and a log-out message is sent to
11 the user. The user parameters are the structures that
ij inform the system about the user's current status. When
és the parameters are cleared, this informs the system that
o cib the user is no longer logged-on. The user would have to
‘Eﬁ - log-in to access the system, after the log-out command is
<\¥ completed (See Figure 11I-8).

=
- A

"3 Help Command
3
£ A '

: If a help command is received the user can be
if requesting either system information or command
1&3 information. Whichever is requested the user is provided
‘ . with the necessary information. The design does not
Eé include the necessary information for user log-in. This
g% information will be documented and available for each
{%‘ user. This implies that a user must be logged in to
ﬁg ‘%} request help.

3:,1?
.:i
- I11-16

. - PER I - - et T .
R T AN W S N T N LS

.....

PN A AT)
<ot .

........

)

. -(‘\ SRR

AN DNy
0¥ S, Ly

~ T NCR N A
< q--"."".1 _n R I .-\‘\. I

-
LA

.V NN

o . - wih 4 t] 3 !..v‘vv\w(-ﬁ\ \‘\:‘\'. ~ .‘- ,.' l;‘ ..' ..‘T."J" ‘.' ..' .:' Lty v. ¢ ..'.-7-;.“-._7‘ . \?'~v_ Ve -'\f. R -‘.»- .T

Portno

27

,A
‘-‘:,

A

Logout

o 4

”

User
~1.2.3.2

ot
Vg
)

i < Fortno Logged-0ut
[)

5 .
: Clear User Build

-ig Parameters Message
> 1.2.3.2.1 1.2.3.1.2

ﬁf Figure III-8 Logout User

" I111-17

-.‘t~
-’::~'_--\~\ O ~<4"$-.‘<\n‘.-..ﬂ.:\w\q\r\._-.-“<4-."'-.-'.~‘v'.~.~¢‘\{.‘."_'-‘.'_-".‘-'-‘2"\“- LA TR \‘.‘I "\“.:\'.'\'."j
SR 'f_:f;fd‘::ﬂ'd:q-&.:'.i;s';fu'u'.}'. e Tt e et e sy A A T e T et T et T T T e

- L LY AT S Y AR A Ot DAL

NN R RS S 2 2 2R A R A D A B I P I N IR A L O N A A L

"-_,\
I~
28
RS
-".‘;

L
SOORRN .

T e In the design of the execution of the help command,
Lz, the information is retrieved and sent. Before the
< 4._"

‘ﬁﬁ. information 1is retrieved, the command is checked to

o determine if the user is requesting command information or
e system information. Command information is the format of
- .‘(".

D

4&3 commands and the description of what the commands do.
<Y

YOR . .

- System information is the status of the computer system
e (See Figure III-9).

Ty

\l
F N]

)

o User Commands

"

393
Y User commands are divided into the following five
A
- @ types:

{:

e
e 1. Running a file.
o
\f 2. Listing a file.

Yy 3. Printing a file.
=
.I‘ » »

i& 4. Deleting a file.

5. Directory information.

e

o

s The execution of all user commands are similar.
\ - First the file must be located (the directory is saved in
’iﬁ a specific location), second the file must be retrieved
-P".'.

0K from secondary memory, third the file is buffered into
, main memory, fourth the job is placed into a waiting queue
g Raps

“ PN}

:ﬁ D for execution. After the four steps the files waits for
-

o
,!'.\ H
e 111-18
o

& I .“:‘ 0
LS e
+J SN RN B

A2
..I.l.a

)
T

e N

N A Ll R A A i e T A e PR -
Command
Table
Help
User
1.2.3.3
System Command
¢-H£ln___.o o.HLl.P_.
Get System Get Command
Information Information
1.2.3.3.1 1.2.3.3.2
System Command
Information Information
kf — - -
Build
Message
1.2.3.1.2

I
» s

” WA

*y

" IERrLEt It v e o
o PRI A
Wt Tt e
SRR LR BN

Ve

L AN O

Figure

ITII-9 Help User

i
AR
L]

-.‘cn"-\\\

DA,
AN AR

(s

Y0y
Ll
A B, 4

i

p
PR

J...

AP [T
'-’.(" \’l,’l_"l"o. ,‘: N
PR o i W e

A et

- \.'A-Q‘.
AR

its turn for execution.

To run a file, the executable code is located in main
memory and then executed for the user. To list a file the
file is taken from main memory and transmitted to the
user's terminal. Printing a file is similar to listing a
file except it is transmitted to a printer. Deletion of a
file 1is done by buffering in the directory section
containing the file information and deleting it from the
listing and then writing it back out to secondary memory.
Directory information 1is executed by transmitting the
buffered directory to the user's terminal (See Figure

I11-10).

Evaluation of AMOS Design (Testing)

The evaluation of AMOS design consisted of a two
phase process. The first phase checked to see if the
design had a 1logical structure. A logical structure
should have upper-level modules calling 1lower-level
modules in a organized sequence. The sequence would
follow a logical flow. For example, it is necessary to
call a module getting a username before calling a module
to check 1if the username is valid. The second phase
determined if the data flow between modules was logical.
The data would be needed in the called module or in

another 1lower-level module. This lower-level module 1is

...........................

T P

- > S et B AN R A N S AN ata A

LA S '-.'--‘.-‘.'-‘-'—'-‘-'-j"."‘ o

N Command

.. ' Table

i Execute

N User

o Command

- 1.2.3.5

Command

2 ¢

Command

e —

Valid/
< Invalid

u: Validate
- User
ot Command

c fi? 1.2.3.5.1

kJEable »

Execute

Command
1.2.3.5.2

Figure III-10 Exec

-_'-c
)
“.
TV B o R SO P G N A R A e - el e
W '\\ by "\\'" “{S.l_'.{‘;&-“h\.l'—.z W N et et & L et I A

ute User Command

X
)
4",
s

- f"."'-'.'."""
Srata el Tt

e s e
.

DY
FOATLIRAR

a child of the called module (Ref. 13: 220).

In the evaluation of the logical structure, a few
minor changes were necessary. One of these changes
involved the polling routine. The first design did not
take into account that the users could be idle for a long
period of time while a process was ready to run. The call
to the Process Scheduler was added after a set number of
polls with no response. Another change involved execution
of a user command. The execution of each user command was
similar; this allowed for common modules that would be
called to execute the commands.

The data flow was verified to be logical with a few
changes. To execute a command, in the initial design, the
command table was the data flow item passed between the
modules. When the Process Scheduler was incorporated into
the design, the process control block was the new data

flow item.

Summary

This chapter presented the overall system design of
AMOS. The top-down design approach was followed using
structure charting. The operating system was designed
with the idea that it would be implemented using a

structured programming language, i.e. C.

I11-22

[';.’ A.".,‘."ﬁ‘. ‘

.
>
.

The overall system design 1s separated 1into the

—~;

following three parts:

1. 1Initialize of Data Base.
2. Polling and parsing of the command.

3. Determination of the command type.

These three parts are the first 1level of the
structure chart and call other modules in lower levels.
oy The structure charts are located in Appendix B. The
- process definitions and data dictionary are located in

NS Appendices C and D, respectively.

« - .
P

. a
P

Tra e A R e e
S, '5’1)1_-_ .

-
o “

)
LA}

i

e

fg\t.

. II1I-23

”
Ko

DAL I B R D R N R . R T T T T T U e R T
PR _J‘_:,'o’\i’._ .'._-',-'/.'_-'n'{«"'J'-,‘_-f‘_-, e R e T S I A o

\r~-
0
;

-
o

T rEY
Cata

(-

IV. Memory Management of AMOS

Introduction

Memory management deals with the management of main
memory (Ref. 7: 105). The memory management scCheme
selected for initial implementation on AMOS was dynamic
partitioned allocation. The reason this scheme was
selected over other possible ones will be explained in
this chapter. The follow are four basic functions that

any memory management technique processes (Ref. 7: 105).

1. Keeping track of the status of each main memory
location.

2. A policy of allocation of main memory to jobs.

3. An allocation technique.

4. A deallocation technique.

The status of any main memory location can be either
allocated or unallocated. The importance of this function
is to ensure that if a process is in main memory waiting
for execution can not be over written, and that the area
of main memory for the operating system is always
allocated. Even with a single user system it is important

to the status of each memory location.

Iv-1

¥

P4
[N
PRI

» i ~ A%
R R K [4
A Y.
-, . 55N

o

. A .
» .A‘.J "sststa

VNN,

s R T T N S R T N I T T T e L T T AT

The policy for allocation of main memory is dependent
on the type of system to be implemented (Ref. 7: 105,106).
If the initial implementation requires only a few users, a
simple policy would be sufficient. For a larger number of
users, a very complex policy would be necessary for a more
efficient use of available memory.

Allocation and deallocation is the process of placing
jobs in and then taking them out of main memory
respectively. The allocation of main memory to jobs is
important to allow execution and to allow for the
execution of the maximum number of jobs. Deallocation is

important to remove jobs as efficiently as possible.

AMOS Memory Allocation

Dynamic partitioned allocation (DPA) was the scheme
initially selection for implementation for AMOS. Because
DPA allows for multiprogramming which is mandatory for
AMOS, unlike a single contiguous scheme. The level of
complexity 1is not as great as a segmentation or
demand-paged allocation schemes (Ref. 7). Also by
implementing with DPA the operating system can be easily
updated to handle different algorithms which is necessary
for a teaching system.

The first criteria that DPA allows for is to have

more than one job in main memory at one time. This is

- ® et e @ o, - . . ? e, - am L, PRI A A T T PO I A - e et A d .

e :f;t done by allocating the amount of memory that the job needs
and no more. The rest of the area that the job is not
located in is unallocated (free). This free area can then

be used to load other jobs into main memory.

I3

Koo s

Ey Status of Memory Partition on AMOS

&§

Y

(R W

Mg The status of each memory location is determined by
o

X having a buffer that contains the beginning and ending
W

nkﬁ address of each allocated jobs. Any area of main memory
ﬂi{ not residing in the buffer is considered as 'free' area.
=

o

\'.:-'

- ~ Allocation Policy Used on AMOS

m @

A

A58

ﬁgg The two type of allocation policies that could be
4

W implemented on AMOS are first-fit and best-fit. First-fit
jﬂ searches the free area table to find the first partition
7

N

,§? large enough to fit the incoming job (Ref. 3: 250). This
o

‘s free area table is ordered by memory location. The first
{5 area of memory that can accomodate the job will be used
E&ﬂ and the unused area will remain free. Best-fit searches
e the free area table to find the partition that wastes the
j}ﬁ minimum amount of space (Ref. 3: 249). If the free area
e

-)‘ . . » v

,3; table is ordered by the size of the partitions, then the
‘e ./'"
523 algorithm used in best-fit is the same as in first-fit.
T s , . . s

OO TR This is true, since the first partition large enough for
iy AL

)

A

S

%3

oty
I‘-‘.

—

¥
&

; ."‘,

fj :; the incoming job, it is also the best partition. Best=-fit
f) i also reserves large partitions for large jobs by using
‘?f small partitions for small jobs. Because of this, it is a
5%5 greater possibility that 1large Jjobs will be executed
Ji‘ without any wait by using best-fit. By all of the above
2; reasons, best-fit was the policy selected for initial
tﬁ implementation on AMOS.

=

A

R Allocation on AMOS

:J Once a large enough partition is available for a job
:E the process of allocation is necessay. On AMOS a job is
;§ 3 read from secondary memory a sector at a time and then
y ‘jb transfered into the appropriate partition. The reamining
~ﬁ area is placed into free area and the occupied area is
:&: considered allocated. Once the entire job is in main
q} memory the beginning and ending address is placed into the
;E job scheduler waiting queue. There the job is waiting to
2: be executed.

Eﬁ Deallocation on AMOS

ii After a job is completed execution the area that it
‘éz resides in must be made into free area. This is done by
;i taking the allocated array is changed reflecting that the
Ei 53? job is removed. This program will remain in main memory
E

000

...............................
.....
et

AT NN

P

TIPS S
A Aty el S

»

.l..J-’\ R

'+
» B

B
[N

Pl
Y

LR N

until some other job over writes it. This program 1is

unable to be accessed since the area it occupies 1is

consider 'free.'

Design of AMOS's Memory Management

The design of AMOS's memory management, like the rest
of the operating system, was done using a top-down
approach. The memory management design was separated into

the following two parts:

1. Allocating the job to main memory

2. Deallocating the job from main memory

Allocating the Job to Main Memory

The process Get File calls the necessary processes
for placing a job into main memory and preparing the job
for execution (See Figure 1IV-1l). The following are the

processes that Get File calls:

1. Check Space
2. Build PCB
3. Read File

4., Build Error Message

...............................

el Wi Command
- Table
v Get
@?: File

'.'- 1.2.3.502-1

(03
No Space
Available

|

File Descriptor
— 0

PA

-

P

Command

Table File

Descriptor

2
Check Build “Read BuildiError
Space PCB File Message
1.2.3.5.
CEta 1.2.3.5.2.1.1f1.2.3.5.2.1.2]1.2.3.5.2.1.3 1.1.1.3

Figure IV-1 Get File

o -, e 'f'-,’r""‘.-".-“:..‘ AR -...'_ T A SR S O ITIL AR R .
e IR RN, P PP AL A A A I S SO Sy B T S A et e et e At A]

Y ;:.

‘s
o

NN

PR 3
12

g
'
J

> v
o
s Prs
+
>, A.J

L
s et S

2"

» 'I “l

Lo N

D“
X

LIS o
YV - §

e "u. .'i."b

o

s
.oe

-
P4

-..‘
LY

'
'y
l‘/

Y
&

Check Space, determines if there 1is enough main

memory space for allocation of the job and where in main
memory the job is to be placed. Build PCB, constructs and
initializes a Process Control Block that is necessry for
execution of the Jjob. Read File, reads the job from
secondary memory and places it into main memory at the
alresdy prescribed 1location. Build Error Message is
called when there 1isn't enough available space for
execution of the job and if the job is too large for

execution on the system.

Deallocating the Job from Main Memory

Deallocation of the memory is executed when a job is
completed or aborted. The module Run Process calls
Deallocate Memory Space to have the space 'freed,' (See
Figure 1IV-2). After this main memory area is 'freed,'
control 1is returned to Run Process. If there 1is a
timeslicing environment, then this must only be called
when the job is completed or aborted and not when the job

is stopped.

Implementation of AMOS's Memory Management

The <coding of AMOS's memory management is a

one~to-one transfer from the structure charts. The

e A A A R K LIRS TR IS S L I St SR R - et et et At At At
> \|.~J\ 3N \-.~ .'}."\. 1... =ty T .\."~ J\’\"-“\-"ﬂ“-’\ R Se e 3 SR RN \J\- ‘\\.‘-'\v- : "s

N

DARENS

PANE KA AT

r’e

-~ ¥t

N Y YY)

XY

“‘

Pt IS

N & A

e

A XN

28 ELLE

i

T4

...........................

-y e 0 T B WY 'ﬁ".‘f.“j‘,-‘;s‘_-‘_-‘_- “.’v)-}A-.:_I.';‘.-'\v;‘-"-?';I Pl " ol o r,riffﬂ'.i"dv'.r.r;'l'r'7'-r"_T

PCB

Run
Process

.2.3.5.2.2.3

)

PCB PCB PCB PCB PCB

¥ i $

Send File Write File Deallocate

To Port To Secondary Memory Space
1.2.3.5. Memory 1. 1.2.3.5.
2.2.3.1 2.3.5.2.2.3.2 2.2.3.3

4 l

Run System Run
Change Program

1.2.3.5.
1.2.3.4.2 3538

Figure IV-2 Run Process

..........

R Il -..'-.- ..‘ K . e _.. - -. P A AR AT AP LI o - . ,a; CIRPCERE R e) ‘_--'.;'-:_A. ',: ~ -'..-‘._-'_.--..-..~ L K . '.. - .‘~-..- ‘..
SIS IR & L R A H R S PR '.!-.[\}:. ﬂ!'. .;;‘.‘E\E-\.'!s‘;. TR Y -._{_‘._[_.:A.‘_.JL._“_.L__.;_:‘__.‘_‘\‘ A._J

L A T [- N B gAY Ll et il T A", A ROAR R
™
N
.::‘ 1
. _.-.}_\
3 -537 pseudocodes of the modules to be discussed in this section
{
o are:
1. Get File

.; 2. Check Space

<
: 3. Read File

’ 4. Deallocate Space

S

D The source code of these subroutines can be found in

Appendix E.

o

o)

v\ :

L. Get File

'!

‘2 Get File calls a subroutine called Check Space which
i§ determines if there 1is enough available space in main
) memory for execution of the job. If there 1is enough
~ space, the job is then located in secondary memory. The
x

3 job is then taken from secondary memory and placed in main
o~

memory in a contiguous section. Once the entire job is

;: placed in main memory the number of jobs in the system is
~
-
'i incremented by one. If there is enough space for the
%
bl execution of the job, an error handling routine is called
Ef and control is returned.

- The following is the pseudocode of the Get File
b subroutine.

N A

- s

“*

-

D
>

-y . 4 4 A% 4 B0 Pt e e T R N e R A L . =LY, '_."_.'..r"*..* DAt '7,7‘4 _?'.-V' '-‘?'7. -‘_.2'_.’

S T R RN NS R AR A
i@

-

-

‘ AhkkKhK

e B 2N
- A
{

o Procedure Get File

\'-.

:2 If enough space for job (Check Space)

& then

I-\:

iz Build PCB

~

N Read the job into main memory (Read File)

. Increment number of jobs in main memory

<. v

X End if
;; Else

S Call error handling subroutine

3; End else

AN

o End Procedure Get File

z, o

::‘: *hkK kR

N

LN

o

-~ Check Space

Bt

S Check Space searches the free area table to find the
- a location where the incoming job can be placed. 1If there
~

:3- is more than one job on the system, a subroutine called
o

2,

:ﬁ Sort is called to order the free area table from smallest
g; memory location to largest. Thus, the first partition
e
:ﬁj large enough for the incoming job is also the best
TQ partition. Check Space calls the error handling routine
il

- - when the incoming job is too large for all of main memory.
) ~$

. IV-10

. ‘J'-' . ” ‘.' "‘-‘

AL, - -

AN

,_
BT

LMJ.

el s

[

Rl W N4

A U

M CRICI I e e ML A s IS A AR

VO K SRR

el

>

The following is the pseudocode of the Check Space

subroutine.

* %k Kk Kk

Procedure Check Space
If two or more jobs in main memory
then
Call Sort to have free area table ordered by memory
locations
End if
If large enough partition for the job
Allocate the memory needed
Return enough space flag
End if
Else
If program too large for all of main memory
Call Build Error Message
End if
Return Not enough space flag
End else

End Procedure Check Space

ik khR

.r{-r -'.§(\1;'.';-‘ TR
L)

Read File

Read File locates the file in secondary memory and
the reads it into main memory in a contiguous block.
While each byte is being read in, it checks to see if an
End of File (EOF) marker has been reached. This indicates
that the entire file has been read from secondary memory.
Once the EOF has been reached control is returned to the
calling module.

The following is the pseudocode for the Read File

subroutine,

* Kk kkk

Procedure Read File

While not EOF
Read a block of the file and place into main memory
Check for end of file marker
Move to next block

End while

End Procedure Read File

AR

e

’ "

4

L2 "8
P Pl P

DA - (9

L' g

PN ol

.
L A

Yy,

avow o SN RN N R T S T NP T TSI AN TR ORI TS

Deallocate Space

Deallocate Space 'frees' that area of main memory
where a completed or aborted job was. This is done by
just updating the free area table to indicate the area is
now 'free.' The Jjobs in main memory must also be
decremented by one

The following is the pseudocode for the Deallocate

Space subroutine.

* Xk k Kk

Procedure Deallocate Space

Determine which area is to be 'freed'
Remove that area from the free area table
Decrement the number of jobs in main memory

End Procedure Deallocate Space

%k k kK

Summary

Dynamic partitioned allocation with a best-fit policy
was the memory management scheme selected for initial

implementation on AMOS. The design of the memory

management part of AMOS was separated into two parts.

8 TT¥ T

. e e
R I O I ..
ndaiatala s las,

v

These two parts were allocating the job to main memory,

and deallocating the job from main memory. The pseudocode

for the memory management subroutines was presented in

this chapeter. The actual source code of these

subroutines can be found in Appendix E.

Iv-14

. L. .- . .
A e e T e e A A AT T
PEPRCIPOAL PRV P8 PRAT P ATV o ST A 8 PP Y ST ok &

et
. PRI P
pe ':. f.." PV P 'y

LW .::\‘ ‘Ot - ‘ ;.‘.”"‘._- .

4"
K
II"“I

A

b "l
I

Lol

' 0
P g

¢ 'fl‘ Pl L

J {.!-. ,)
S NN A

N

O

l‘. 1

V. Secondary Memory Specifications

Introduction

The purpose of this chapter 1is to present the
specifications for secondary memory. The specifications

for secondary memory are:

1. Directory format

2. Sector format

Directory Format

The directory is divided into two areas. These areas
are the free sector information and the file information.
The free sector information is located in the first six
bytes of the directory. The file information follows the
free sector information in groups of 27 bytes. The

following is a byte description of the directory:

Number of Last Free
Free Ssectprs Track & Sector EQOF
0 12 34 56 L -~
33 3 #
.—v——J [-~ ated #
First Free Directory
Track & Sector Entry

Figure V-1 Directory Byte Description

.........

)' L .".“ DO
- AN

.t
g

NN -
e e

R

4,

. (:D'.l.‘ﬁ"l‘.":t. -
AECLL S Ny

-

The first two bytes of the directory contain the
value for the number of free sectors on the disk. The
next two bytes point to the track and the sector of the
first free sector. The last two bytes point to the track
and sector of the last free sector.

The file information group is divided into the

following four blocks:

1. File status (1 byte)
2. Filename (12 bytes)
3. Username (8 bytes)

4. File Information (6 bytes)

The following is a byte description of each directory

entry:
Begin End
. Track Track
Period
. Begl End
File's Name Extension File [sec|Sec

Sigze
' L
01234567809 1231»5678901"?341.561-

J:* . e . T — 3
Filename Username File
S;;ggs Information

Figure V-2 Directory Entry Byte Description

V-2
~
e
.f.#- - LI Y \f X -) NS ._..-.'_ .'.-«' -4-.> I -.v N .:'..‘-._._. \-...-.-..'- "
‘Lh\ﬁﬂ&ff\k\\\'\&}:ﬁ \A. 'f\ &‘-\tl-l-h.‘l_L o -\-L‘tl ‘At "J‘.J" .f_-_n?‘.l-cz.JIL!L"-_ L r._.i._;, LI

\ }‘l)...‘.-"

L
3

:

~

_:'_7 _j‘_;:::\ The status of a file is either accessable or deleted.
\ -~ If a file is accessable, byte 0 has the null character.
" If a file has been deleted, byte 0 has the asterisk ("*")
character. It is necessary to update this byte whenever a
. | file is added to or deleted from the disk. If a file is
:. added, the sectors that the file was placed in must be
: removed from the free area. If a file is deleted the
' sectors that the file was in must be added to the free
-f‘n area.

, Bytes 1~-12 contains the name of the file with its
. extension. The first 8 bytes is the file's name. Byte 9
: has the period (".") character. Bytes 10-12 contains the
;:i extension of the file.

G. Bytes 13-20 contains the username of the wuser who
% saved the file on disk. This allows for the file to be
~y

':ﬁ accessable only to the user who saved the file. This also
allows for a type of mail routine by having a reserved
Z:'; username of any public file.

Bytes 21-26 contains the files size and 1location
5 information. The first two bytes contain the number of
__; sectors that the file occupies. The next two bytes are
\i the beginning track and -sector of the file. The last two
._j bytes are the ending track and sector of the file.

o

V-3
..
-
.
VIS TSI TS TS S TSI SN RS AP RV R A R NE R e AT T AT AT A AT A
L% tﬁ\‘h“'_.'::ﬁ‘)ﬂ‘,‘.o}‘a:'.n_'}}.r RS S S W R S P PR IR

Sector Format

A typical 8 inch single density floppy disk contains
128 bytes per sector. The format of each sector of AMOS's
secondary memory will consist of the last two bytes
pointing to the next track and sector in its respective
list. The byte description of each sector is shown in
Figure V-3. These lists are the free sector list and the
file sector list. The last sector of each list points to
track 0, sector 0. This indicates that the end of the
free area or file has been reached.

When a disk is formatted for AMOS, a directory entry
is reserved, then each remaining sector points to the next
logical sector with the last sector pointing to track 0,
sector O. The 1logical sector 1is determined by the
rotation speed of the floppy and the retrieval time of the
floppy (Ref. 7: 303-306). The directory's first 6 bytes
contain the number of free sectors and the locations of

the first and last free sectors.

Next
Storage Area Sector
r -~ =
0 1 2 126 127

' NexXT

Track

Figure V-3 Sector Byte Description

V-4

Yo (™

P T T O M e R S P R T T T T R e S R W WU I N W
- e - e I T A I TR 2 . » - . LR RIS L B R I A T At S -
ﬁ_s-:.'m;;.;._x;\ ALY CHERTIBCRER IR € N 3k £ I e R A AT AP I AT

NN US

FEVE M SEARRYAL)

AR

When a file is added to secondary memory, the file is
stored at the first free sector and is then stored in each
successive logical sector until the end of the file is
reached. The last sector points to track 0 and sector 0.
The free area table and directory is the updated to
indicate the change. When a file 1is deleted from
secondary memory the last sector of the free area table
points to the first sector of the file. The free area
table and directory must be updated to indicate the

change.

Summarx

This chapter presented the specifications of
secondary memory storage. These specifications included
directory and sector format that the main memory manager
requires. The secondary memory manager was not

implemented because of the lack of driver routines.

: RS VI. Implementation of the Operating System

~;
0L

:';3: Introduction

‘\" The purpose of this chapter 1s to present the
“‘- pseudocode of the algorithms that were chosen for
) 3 implementation in the detailed design. The coding of the
5%:: operating system, and some of the problems that occurred,
1":‘ are also discussed.

‘A "Coding is the implementation of the refined design,
\"-\: with the idiosyncracies of the programming language,
-'E operating system environment, and external (human and
" @ hardware) interfaces taken into account" (Ref. 11: 12).
\'.'-j Since the structure charts were used in the detailed
'::',E-: analysis, the coding was nearly a one-to-one transfer
‘_' from structure chart module to coded subroutines. This
w.j.z provided the modularity that was striven for in the
..EE design. The updating of any of the subroutines, either
- making a minor change in the original subroutine or
‘;:‘é replacing the entire subroutine, can be done without
:’;E:' changing any other routines, as long as the interfaces
2 ‘ between subroutines do not change.

o VI-1

A T T N T T e e
SEREY s.l._\,*._ ._~.,.~'

ks

e _' \-.~ \

N .."nﬁ)s

_“ -" “‘ -

WA

Main

The Main subroutine is the first procedure that is
executed. This subroutine was coded using the design
given for the EXECUTE AMOS module in Figure 11I-2 on page
III-5. The operating system is centralized around this
subroutine. The following is the pseudocode for the Main

subroutine:

% k& k%

Procedure Main

Initialize Data Base
Loop

Parse the command line

Determine valid command
Forever

End Procedure Main

LA S & 8]

Initialize Data Base

The Data Base is information used by the operating

system and is defined in the source code. Since the

passing of variable parameters is complex, the C-defined

.......

2R

'::"- v structures for the Data Base are global to the operating
:\.‘3 system. The variables are made global by defining them
;:j: before the main module (Ref. 12).

:::Z,: The implementation of initializing the Data Base 1is
.‘r.': done by using a simple operator, the assignment or '=.'
?‘ This subroutine was coded using the design given in Figure
::?:’: II1-3, on page II1I-7. The information that will remain
_”‘ constant during the execution of the operating system is
*' implemented using the C language '#define' (Ref. 12: 86).
7-::» The information that might be changed during the execution
‘ of the operating system is initialized in a subroutine,
Y

‘;\ called INITIALIZE-DATA-BASE (see Appendix E). The initial
:&:\ @ values can only be changed by software enhancement. This
":..) implementation is only recommended for the initial
," testing. Any updated version of INITIALIZE DATA BASE
-:': module should follow the design presented in figure III-3,
_ on page III-7.

:‘:5- The suggested implementation for 1initializing the
= Data Base is reading the information from a file on the
::S operating system's disk (e.g. the VMS 0/S for the VAX
-::3 11/780 located in the Digital Engineering Lab (Ref. DEL))}.
‘ This allows for an easy updating of the Data Base. For
example, when adding another terminal to the computer
S system, it is not necessary to change the source code and
N

"""' recompile it. The changes can be done by a System command
...: E: which can be written when this implementation is added.
%

2

o vI-3

N

AR Y, R N AT o o L A P T A G S S S

- e s J RV eV a AN Ch®a® P SR P R A R S S T AT Y AP S T AL P P A I L)

R

-\.'::\

XN

;'\ x:-‘-_.

NN The System command would change the information in the
‘nw following parameters:

K .(;

Py . .

Y 1. noports, the number of on-line terminal ports.

R 2. MAXJOBS, the maximum number allowed on the
,gg system.

o

N 3. portdata, the data table for the terminal
;.;;;. ports.

w5

o

::t The changes in the Data Base would be saved in the
ﬁq Data Base file either when the System command to change
s

':3 the Data Base is executed or when the operating system is
. (f? shut down. The shutting down of the operating system
o ' would be performed by another System command that would
o ',-«'

‘@ﬁ also be written when this implementation is added. This
o System command is not needed for the initial
fk implementation because the saving of the Data Base is not
nd

33 essential. The reason for this 1is the Data Base
= initialization is coded. It is recommended that the Data
+§§ Base be saved at the time it is changed and at the time a
f?-'.

:&i system shut down is performed. This will ensure that the
2% information of the Data Base is saved if a power failure
i:- occurs after a change.

.-:'.:;:

o

"y .

o o

o

R

v‘._¥

N

_.::. VIi-4

e e e AT T -
T AN

TR .« P S
a DR o

PO

'''''''''

@y v A
:"

.

g
L)

"
>
.
-
-

. Cal= A I L R N S A BN I ‘ DRI YL I AR L P i BN B

Parse Command Line

This subroutine waits for a wuser to attempt to
communicate with the operating system, gets the user's
command line, and parses the line. The command line is
the character string that the user inputs from the
terminal and is terminated by a carriage return. This
subroutine was coded using the design given for the
PARSE COMMAND LINE module in Figure III-4, on page III-9.
The following is the pseudocode for the Parse Command Line

subroutine:

* kR *k

Procedure Parse Command Line
If Poll is true
then
Get the command line
Build the command table (parse the command line)
End if

End Procedure Parse Command Line

LA R 2R

«

T '.'.\L‘ "

LIEN

S -
SR

N -
MRS N SR Nre.l

O

s A

‘s

v

B e

AN I
AL
tatda

Y .
- N

PR 20 2 e
.'.ﬂ\J‘r‘tS‘- ‘-

= P AT

At e

fii

Poll

The Poll subroutine returns a boolean value (true or
false). It polls the terminal ports to determine if there
is any input. The polling algorithm used is circular,
that is, it starts from the beginning of the ports (port
0), goes through to the ending of the ports (port n-1,
where n is the number of terminals on line), and goes back
to the beginning of the ports. It checks those ports that
do not have a submitted job. 1If a response is found, the
polling routine is stopped and the true is returned to the
Parse Command Line subroutine. If it goes through one
pass of the ports and does not receive a response, then it
calls the Process Scheduler. The Process Scheduler takes
care of the processes that are submitted. This ensures
that any process that is in any of the process queues has
the chance to run. After returning from the Process
Scheduler, the polling is resumed. The following is the

pseudocode for the Poll subroutine:

VI-6

P S A

. NI ->'-"'¢'A"'.' S T e e I P P Mo
PN P P -‘54.;-_h I ® . " o m m e et "t A . o . L N

':\:~ * %k k%
il s
A L]
‘ada
¥
£) Procedure Poll
i Set i to 0
While no response
N While not one pass and no response
If no process submitted from port[i]
4- then
5
:,‘,: Check portf[i] for response
st
e I1f response
o then
A
o Return true
-~ G: End if
:;;;j End if
o
o Set i to next port number
e
N End while
*":_. If no response
o
i‘l
}.:::. then
P Process Scheduler
:Q::: End while
S
o8 End Procedure Poll

LA & &4

Determine Valid Command

The subroutine Determine Valid Command determines
what type the command is (i.e. system, user, help, and
control). If that particular command is valid, then it
calls the necessary routines to have the command executed.
This subroutine was coded using the design given for
the DETERMINE VALID COMMAND module in Figure 1I1I-5, on
page III-10. The following is the pseudocode for

Determine Valid Command:

*hkhkkk

Procedure Determine Valid Command
If user already logged in
then
If Log out command
then
Log Out User
End If
I1f Help command
then
Help User
End if

If System command

then

“. -.(' P T e e . _‘.‘_'\-_ S

S e et e e e T T
S P A AL S

LY

System Change
End if
If User command
then
Execute User Command
End if
If invalid command
then
Send invalid command message
End if
End if

End Procedure Determine Valid Command

kkxk%k

Log In User

The procedure Log In User accomplishes one or two
functions. If a user inputs a command 1line, then
Determine Valid Command wants to know if the user is
already logged on. If the user is logged on, then control
returns to Determine Valid Command to execute the user's
command, else the user is attempted to be logged on. The
global table userblock has a logged on flag that is set to
true or false. The flag that corresponds to the

terminal's port number is checked to determine if the user

- a & e . Pl . R e A at et D I N I R L A e D AT A -v: “ . ;—‘-‘:v-"—-'r-"—-"‘-\i"—-."» M
SN
A
.::\'
SN
o
J "-
Kl TN
ST e is logged on, yet. This subroutine was coded using the
X -

design given for the LOG-IN USER module in Figure I1II-7,
NG on page III-15. The following is the pseudocode for the

Log In User subroutine:

oy * Ak k A

X
A

2
e Procedure Log In User
G
T If user not logged on
s then
ks %
e Prompt user for username

X
RN Read in username
f? . Prompt user for password
. W
- Read in password
e
SR If legal username and password
- o
..1:,
ak then

]
o Copy username into userblock
‘e Set loggedon flag

Increment number of users on system

‘:{ Send login completed message to user
’?n'
o End if
e End if
s
- End Procedure Log In User
;f
- khkhk

4 .
SRR
.:_\..‘ T

-
o

Log OQut User

The Log Out User subroutine is a simple routine, but
accomplishes an important cleanup function. It clears the
userblock of the username and sets the logged on flag to
false. It also sets the jobrunning flag to false. The
jobrunning flag should already be false, since the user
cannot communicate with the operating system unless no
jobs were running. This subroutine was coded using the
desgn given for the LOG-0OUT USER module in Figure III-8,
on page III-17. The following is the pseudocode for the

Log Out User subroutine:

LR R 2

Procedure Log OQut User

Send logged out message to user

Clear username space in userblock table
Set loggedon and jobrunning to false
Decrement number of users on system

End Procedure Log Out User

(R
« e,
o K

Help User

The Help User subroutine provides information to the
requesting user. The two types of information that is
provided are system information and command information
(Ref. 4: 52). A system help request would give
information to the user about the system. The following

is an example of a system help request:

'HELP USERS'

This command line would result in the listing of all
of the users that are logged into the system and what
terminal number that each user is using. A command help
request would give the format for the command and any
information for the command.

The following 1is an example of a command help

request:

'HELP DEL'

The response from the operating system would be as

follows:

'Format: DEL FILENAME'

‘.

CEX A

AL
. l- -' l,‘

8 .e s

EaY This subroutine was coded using the design given for
the HELP USER module for in Figure III-9, on page III-19.
The following 1is the pseudocode for the Help User

subroutine:

kkkkh

Procedure Help User
If system information is requested
then
Determine what information is requested
Get the information and send to the user
@ End if
o Else
If command information is requested
then
Determine which command's information is needed
Send the format and other information
End if
Else
Send no help available message
End else
End else

End Procedure Help User

N R KR

S AR LN, |
L.‘_:a
<
b
{
AN System Change
» The System Change subroutine determines that the user
#: is the 'Superuser', then it determines what changes in the
AR
‘Jﬁ Data Base are requested, gives the user any needed prompts
Ry
W for the new information, and performs the necessary
M changes. This subroutine was coded using the design given
2.
-A.V.
- for the SYSTEM CHANGE module in Figure III-6, on page
Gy
S I11-13. Because the 1initial coding of the operating
;h system does not have a dynamic Data Base (that is, the
Ny
$2 initial values cannot be changed from loading to loading
M
)
f“ CEb on the computer system), there are no system changes that
ﬂﬁ) can be permanently performed. When the dynamic Data Base,
\-'\2\
3& using a Data Base file, is implemented, system changes can
I...\
. be performed with the changes saved.
iﬁ In the coding and design of this operating system, a
-".n
,$§ process 1is sent through the Process Scheduler to be
“r
B ..ﬂ
N executed. But the system command is an exception, it is
.22 executed without having to go through the Process
gﬁf Scheduler to run. The option to execute it with the other
S processes is in the source code, because of the following:
B
=
Ay
J{ 1. A System Ready Queue is available.
o
{* 2. A Process Control Block (pcb) is made for the
DI
RO system command.
o
\j-.

EOEREN 3. The pcb is entered into the System Ready Queue.

&F 4. A subroutine is written that would execute the
.l
ﬁﬁ system command when it is given the processing
2 .
¥ time.
) -‘.
-~
a e . :
oL The following is the pseudocode for the System Change
0%
i subroutine:
e
ol * kK kk
g
1o
o Procedure System Change
&2
A If the Superuser
i @ then
™ T X . .
3,# Determine which change is to be performed
20
N Prompt the Superuser for the new information
--’,
Ly
) Get Superuser's response
e
Y Change the Data Base
-, .\'
" .
o End if
S .
Else
53? Send not Superuser message to user
oy f:
R End else
-4 End Procedure System Change
R
NN
WS % K & & %
XN
4 -
AR
7 .' -'. h".-
M
o
NN
-t ..'1

Py ¢

Execute User Command

This subroutine determines 1if the requested user
command is valid. That is if the file being requested is
located in secondary memory, and if the user is requesting
their file. This subroutine was coded using the design
given for the EXECUTE USER COMMAND module in Figure
II1-10, on page III-21. For the RUN command it is also
necessary to determine 1if the requested file 1is an
executable file. If the command is found to be valid then
it «calls the necessary routine for execution. The
following is the pseudocode for the Execute User Command

subroutine:

khkkhk*k

Procedure Execute User Command
If the command is valid (Validate User Command)
then
Execute the valid command (Execute Command)
End if

Else

Send error message to the user
End else

End Procedure Execute User Command

ok k kK

R X AN A
) A,

VI-16

L™ "'}'l T T R R g g g I T A N [N S S "R :i
f_ki\ .ﬁ&‘;‘.ﬂ*ﬁ‘;‘.‘-\‘*‘\“‘_l P A A,'.P._-J':' .ﬂ."d‘:-i I R AP e T g e e R A AT A T U AR S §

K
"t‘L'L’A‘

AL
a"a’ K

GO AL ES S
SRR,

s A
., 4, l.

, / l’ l'

4
N
PN
R

NS

. Y
N

(4

‘n

. 0
4 *,
LA

DA
PR A A]

¢!
»
o

»
‘-f‘r‘r >

. 1.:- >

A AL
L]

. A,

PR)

Validate User Command

This subroutine determines if the user has input
valid parameters. If all the parameters are valid,
control is returned to the calling subroutine. If any
parameter is invalid, an error subroutine is called to
handle the particular error.

This subroutine was coded using the design given for
the VALIDATE USER COMMAND module in the figure on page
B-11. The following is the pseudocode for the Validate

User Command subroutine:

*kkkk

Procedure Validate User Command
If RUN command
then
Check filename, username, and if executable file
End if
If LIST, PRINT, or DEL command
then
Check filename, check username
End if

If DIR command

then

S e R R RN S RS SR GO ARSTARS|
o
e
‘.:_\
e
TN
- 23}7 This command is always valid
(ﬂ End if
;; End Procedure Validate User Command
;4:,2: *khkkh
i3
3
o Execute Command
¢h
3& This subroutine calls the necessary subroutine to
Y
5’ move a job from secondary memory into main memory. The
ol steps to perform this task are:
*\
'-.q
- m 1. Locating the file.
I 2. Getting the file.
-:\A
- 3. Placing the file into main memory.
o
b 4. Calling the appropriate subroutine.
E§
’)\ After these steps are finished the Process Scheduler
o
“w
- is called. The Process Scheduler will then perform the
$¥ appropriate steps to execute the specified cormand. This
"y
%j subroutine was coded using the design given for the
>
- EXECUTE COMMAND module in the figure on page B-19.
\ .
.
, Sj Lo |
A
~

L]

e A e e e e e e e .-.'j
SN PRI T T S I Y I A

Build Message

The Build Message subroutine builds the required
message that is transmitted to the user. These messages

fall into the following three categories:

1. Prompts.
2. Command formats.

3. System messages.

A prompt is a message sent to the user that 1is
requesting some additional information. This information
can consist of username, password, Data Base changes, and
others. A command format is a message that informs the
user of the required format for a command. This message
is used by the Help User subroutine. A system message 1is
a message sent to inform the user that a system change has
been completed.

The calling subroutine sends a single coded parameter
used in the seletion of the message that is to be sent to
the user. The message is not actually 'built,', but it is
defined in the beginning of the subroutine. The message
is then sent to the Transmit Message subroutine, which
needs the terminal's port number that the message is to be
sent.

This subroutine was coded using the design given for

the BUILD MESSAGE module in the figure on page B-24. The
following is the pseudocode for the Build Message

. subroutine:

- %k k ok ok

R

NN Procedure Build Message

3‘3 Define Messages

%ﬁ Case message code

fﬁi Code = 0: Send no help message

}:; Code = 1: Send run command format
€E§ Code = 2: Send list command format
;2: G:ﬁ Code = 3: Send print command format
ﬁ:\ ” Code = 4: Send delete command format
Al

-&; Code = 5: Send directory command format

Code = 6: Send username prompt

- Code = 7: Send password prompt

SR Code = 8: Send logged out message

Code = 9: Send login complete message

rff Code =10: Send job done message

D (additional messages can be added)

'j Default: Send no message error (for testing purposes)
xY End case

End Procedure Build Message

SO RA K KR

vVi-20

“n Error Handling
:;?
b Errors are handled through a subroutine called
KA 'Error', and then control is returned to each calling
.‘;1-

?{ subroutine indicating an error was received. Having
';-\.‘

o control returning to each calling subroutine indicating
N that an error was received, allows for the errors to be
LR

?1 handled efficiently. The Error subroutine performs the
e

i} same type of function as the Build Message subroutine
ol does, except the messages that are sent are error
T~

;ﬁ{ messages. This means that the error messages are defined
N . in the beginning of the subroutine
N &

}i - This svhroutine was coded using the design given for
o

}} the BUILD iL.:ROR MESSAGE module in the figure on page B-18.
15
¥ The following is the pseudccode for the Error subroutine:
N

e
'_-:::- *kfkk

.

AN

;; Procedure Error

FQ: Define error messages
by Case error message code

A J

A Code = 1: Send syntax error received

e Code = 2: Send invalid filename

P Code = 3: Send improper user retreiving file

fk Jiﬁ Code = 4: Send illegal user trying to log in

5

o~

RO N

\rage

J R
L 3y
. :

i) .'./

(e

Code

Code

Code

Code
Code
Code

Ccde

5: Send unauthorized user attempting to do
system change

6: Send unreconizeable was received

7: Send not enough space to execute job at this
time

8: Send program too large for execution

9: Send process was aborted before completion

10: Send Non-Executable file, unable to run

11: Send Executable file, unable to print

(additional error message can be added when necessary)

Default

End case

: Send no error message error (for testing

purposes)

End Procedure Error

* Kk k kX

Static Analysis

Testing the source code requires using a software

testing technique. The initial testing on :he AMOS source

code

was static analysis. Static analysis 1is "a

collection of analysis and testing methods that do not

require the execution of the subject program” (Ref. 24:

5-1).

The capablities that static analysis can accomplish

are: (Ref. 24: 5-1)

vVIi-22

AD-A138 678
MULTIPROGRAMMING OPERATING SYSTEM.

DETARILED DESIGN AND IMPLEMENTATION OF A

<(U) RIR FORCE INST

N OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.
UNCLASSIFIED R K MILLER DEC 83 AFIT/GCS/EE-~83D-14

.

7 2 3.

R R ARED e T

K EEE

i T ———— —— ——10
M _ e ==
|
o,
'Y 1
E 4

.

m
E
[
e
I.E

14
=

i

1.25

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1863-A

et

5 Fob i P2 Pl > KA M "a A Lh Ha™ PR R IR 3 0 R LR PR DAL DALt S A S PR A IR A S i A S

1. Detect and 1locate certain types of program

-4 errors.

%

e 2. ldentify program anomalies, characteristics that
_ produce errors.

M

; 3. Identify constructions that do not conform to the
e .
i* standard syntax.

v, 4. Determire whether the variables are used 1in
i :

fﬁ accordance with the intentions of the programmer.
W 5. Help to generate test data for dynamic testing.

o‘ \

NS

;s The types of program errors that are looked for are
Y&

o

infinite 1loops, module interface conflicts, recursive
‘i“ procedure calls, and uninitialized variables (Ref. 24:

2-2). Because the design was evaluated closely, the only

SRR

program errors that were found were uninitialized

variables. This was the result of a programmer forgetting

P
-8 p

. L
i B

:;¢ to initialize counters used in conditional statements and
")
s loops.
*. One program anomaly was found, using static analysis,
j; and corrected in the design, as well as the code. This
Bl anomaly was the deleting of two seperate files on the same
3: sector that are on two seperate processes that are in
-.':'o
[ready states. The original design and code would delete
.h

\
phal the first file, but when the next file is deleted, the
“A 'EAE first file is restored and only the latter file is
¥
»
p
g ‘: VI-23
H \

P RTRNAT ST N - - o - . L e N e ot T AT T AT T Mt AT AT e e At e Tt T Nt .
Ay »"lr&f’ C o e -‘ . K ° oyt * <y oty n N IO

»,
"

;f
T s
\
{

2
5
€Y s
} ':;:‘;_: deleted. This was resolved by making the DEL command

dedicated. That is, the command is executed without
interruptions. This ensures that a second DEL command

does not negate the first DEL command.

.*.,
LALXAAL

The syntax was tested using the C language compiler.

I
‘3: The compiler used is on the VAX 11/780 VMS O/S. This
3 compiler only compiled the program and checked the syntax
s for the VAX C language, not for the standard syntax for
.' the C language. When this operating system is transferred
«"- to another computer system, the source code will have to
be recompiled for that computer's version of the C
A

-2 language.

:' @ A variable detected that was not used as it was
o intended was ‘end.' 'End' was defined in the global
j variables as a right bracket. In the subroutine Get-file,

" 5

- B

the variable 'end' was used as a flag that indicated an

N end of the file marker was found.
N
';: The test data that can be used for the dynamic
S
5 testing of AMOS could be the scenario inputs that were
Y used in the static analysis. These scenario inputs are:
o
.k ..
N
1. RUN 'any parameter'
:}': 2. LIST ‘'any parameter'
N
) 3. PRINT 'any parameter'
A
= 4. DEL ‘any parameter'
AN 5. DIR
o8
) .'\
SO
Vi-24
A0
-
.sQ
0 ~-'~ o : DAY OSAN Y ' TS INVAA L YAy \:.\:,\:.:_\'.-.:_.'_,‘.' \:_'-c,-.:,s'.x;:.‘:-.‘.\‘_-.‘~.:;x;:*‘-."t W T e

‘.1 = ' T . SRR TR A Wi W wo s e o e Kae Raw A - T L eh ST & Y T -k Ol .-, LA L M S LIPS IS
dg .

%
By A 6. SYS 'an ter'
IR . any parameter
5 7. HELP 'any parameter'
N3y
&-_‘ 80 BYE
u';‘
2 9. 'any parameter'
A%
DA
e 'Any parameter‘' is input that is wvalid or invalid.
o This would test the valid cases and the invalid cases of
i each command. A carriage return would be considered as a
S
i? parameter.

Summary

This chapter presented the alogrithms and pseudocode
for the modules implemented. AMOS is mainly constructed

with these modules. The pseudocode was translated into a

source code language, C. The source code was developed on
”Q the VMS Operating System's EDT editor, which is on the VAX

oy 11/780 located in the Digital Engineering Lab.

w7 @
ey
P
¥

R TG AU R G L G G (O LR ERCPC P AR B
i.c""lu R s) 8 ‘\ X 15,‘4 \ W

VII1. Conclusions and Recommendations

Conclusions

;ﬁa This thesis effort was concerned with the detailed
%}é design and implementation of a multiprogramming operating

3 system for sixteen-bit microprocessors. The detailed
g;Qf design consisted of reviewing the defined system
?§; requirements (Ref. 4 and 5) and following the top-level

design specifications, in the form of data flow diagrams,

to construct the detailed design. The implementation
consisted of transferring the detailed design into a
structured language, that is C language.

The detailed design 1looked at the single user

environment to determine the processes that would be
xy necessary for the operating system. This was the majority
‘ﬁs of the operating system design (Chapter 3). The design
was constructed for a single user and was modified to

handle a multi-user environment. These modifications

wh
-:ﬁ consisted of inserting a scheduler and a memory manager.
‘Eﬁ The implementation of AMOS followed the design,
;;: except for one detail. Global variables were used instead
g i of passing parameters between modules, because passing
fﬂ; structure values on the stack is impossible in C. The
o ;th only variables passed between modules are flags and a few
S

A

- VIIi-1

.‘-' \"--" -"‘.- L L P‘. « L LI N M L ", < -
N NN e NN NS S

others, such as track locations, sector locations, and
command types. The problem of passing structure values on
the stack was also encountered in a previous effort (Ref.
1: 66).

This thesis effort was also concerned with the AMOS
memory manager and secondary memory specifications. The
detailed design of the memory manager was constructed by
following the top-level design specifications, in the form
of data flow diagrams (Ref. 4: 81-83). The specifications
for the secondary memory was developed in conjunction with
memory management (Ref. 1: 44-61).

The implementation of AMOS memory manager was done by
transferring the detailed design into a structured
language. Due to the lack of device drivers secondary
memory management was not implemented. However, the
specifications for secondary memory was developed and
presented in Chapter 5.

The objective that was not met was the actual running
of the memory manager and the operating system. The
operating system, including the memory menager, was
logically tested using static analysis, but dynamic
testing was not accomplished. Logically, the memory
manager will provide a sufficient means of handling main

memory for the operating system.

VII-2

e LY, e P I e N I I S I e R e - . e 2te 0T AP L A .
O A D T 2 A P T A P G T P A A T T AT IR T IO FO P

:?% 3 Recommendations

R

§;3 This effort does not <complete the software
Eﬂ development cycle for AMOS. The testing phase and the
’ coding of assembly language subroutines are not completed.
:% Therefore, the source code has to be transferred from the
%;; VMS 0/S file system to a compatible 8 inch floppy disk for
'f the Am Z8000 system. Also, the 28000 system must be
;;ﬁ operational with a disk system, before the transfer can

o

;i'ﬁ; e

take place and installation of AMOS can occur. Follow-on

thesis efforts are recommended to complete the operating

Ll
.2

system's software development cycle.

@ Testing

&

XA,

éﬁ The static analysis of the source code has already
oy been completed leaving dynamic testing to be performed.
3$ This dynamic testing should include module, integration,
f‘ system, and acceptance testing (Ref. 25: 232). The
. completions of these tests should be extensive to insure a
N working product. It is recommended that these tests
?. should be done before transfer to the microcomputer
;. system, because the availability of software tools, for
ﬁhf example, a compiler and an editor.
‘}; Module testing is the validation of a single module,
;; ﬁ&@ usually isolated from all other modules (Ref. 25: 232).
i§ ’
®
v VII-3

-\ N SRR NS0 o oA S PN ¥,01 LA O E es

SIS This is done by using stubs in place of any modules that

is called by the module being tested and, also, by using a
driver to execute the module.

After completion of module testing, integration

;g testing should be performed. Integration testing is a
:? validation of the interfaces between modules, components,
33 and subsystems (Ref. 25: 232). This testing should be
ﬁ done in a top-down fashion in order to prevent errors from
% propagating down to lower-level modules. If the testing
B is done in another fashion, an error that is found in a

higher-level module interface will most likely propagate

LIS g
Syt 4

to lower-level modules that have already been integrated.

AR 4.

ﬁ System testing is the validation of the system to its
{ ’ initial objectives: it is a validation process when done

in a simulated environment or in a live enviroment (Ref.

25: 232).
‘3 Acceptance testing is the validation of the system to
: the user requirements (Ref. 25: 232), which are defined in
Chapter 2.
%
i
. Assembly Coded Routines
o
ﬁ? The assembly coded routines necessary for an
)
1 operational system are the device drivers and a kernel for
2 the scheduler. The device drivers might be obtained from
; N
N Qﬁ? existing software, such as an existing operating system
.' i
-

VII-4

..........

e e o ey e T Y TN TN T NS NN N BN s AN R Y S N L

Sl

R s "0 -A
ol
e for the
. o

written,

microcomputer. The kernel will have to be

because it will have to meet the specifications

and design of the scheduler.

Source Code Transfer

Currently the source code is located on the VMS 0/S's

disk storage and will have to be transferred to an 8 inch

floppy disk. This can be done by performing the following

steps:

1.

@ .

3'

4.

5.

LSS e i - - -
WA N E RN

PN

Transfer the source code onto a magnetic tape
from the VMS disk storage.

Transfer the source code from the magnetic tape
to UNIX disk storage.

Make any necessary syntax changes that makes the
code compatible with the UNIX O/S.

Cross-compile the source code from C to 28000
assembly code by using the cross-complier
available for the UNIX O/S (Ref. 1: 67).

Transfer the 28000 assembly code to an 8 inch
floppy disk that has a compatible format for

the 28000 system.

VII-5

.'q'-‘l'x‘\ \..\._:.’_\';.-N-.'_'.1_'~¢‘..'\ i .: _\‘_-.'.\'_\ ~ ',‘.'.._ :~.*.' > et

‘‘‘‘‘‘‘‘‘‘

.......

s - i
0 2 Lt £
% ANy

‘.' Vi '\‘“

.’l."
‘.1'4

‘.
&,
1 a8 cs Paly

T
KA,

’

2 It v B e 2 AN e T P u e a0 (oY et i G M, e o, O & m NN T e T R L

Operational Z8000 System

One way for the system to be operational, the
hardware components must be compatible and connected, and
a developmental operating system with a 28000 assembler
must be obtained. The developmental operating system is

needed to execute the 28000 assembler, so that the AMOS

assembly code can be converted to executable code.

10.

ll.

Bibliography

Huneycutt, Douglas S. Design a Multiprocessing
Operating System for Sixteen Bit Microprocessor, MS
Thesis, Wright-Patterson AFB, Ohio: School of
Engineering, Air Force Institute of Technology,
December 1982.

Shaw, Alan C. The Logical Design of Operating
Systems. New Jersey: Prentice-Hall, 1974.

Kaisler, Stephen H. The Design of Operating Systems
for Small Computer Systems, New York:
Wiley-Interscience, 1983.

Ross, Mitchell S. De51q_ and Development of a Multi-
programming Operating System for Sixteen Blt Mlcro-
processors, MS Thesis, Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of
Technology, December 1981.

Yusko, Robert J. Development of an 8086 Multi-
programming System, MS Thesis, Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, December 1981.

Dzida, W. et al. "User Perceived Quality of Inter-
active Systems," IEEE Transactions on Software
Engineering, Vol SE-4, No.4, 270-276 (July 1978).

Madnick, Stuart E. and John J. Donovan, Operating
Systems, New York: McGraw-Hill, 1974.

Richie, D.M. "A Retrospective," Bell System
Technical Journal, 57: 1947-1970 (July - August
1978).

Zelkowitz, Marvin V. "Perspectives on Software
Engineering," Computing Surveys, Vol 10, No. 2 June
1978.

Fredman, Peter. Software System Principles - A
Survey, Science Research Association, Inc., (1975).

Peters, Lawrence J. Software Design: Methods &
Techniques, New York: Yourdon Press, 1981.

BIB-1

NN -"\""- W e e T

.n_.a_m.d_.l_.n_ P T)

.4- PP P P i R I T

h]

f Te, B8 64 -
BRI {3

[AEA l. a.,l‘ T
A AP S S

.
»
o

ﬂb&:" r.' l~1

'y

G XN

A2,

T, A4 Ly T

-

’ Cad
~N
\-\ a

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Coffman, E. G. Jr., et. al. Computer and Job-shop
Scheduling Theory, New York: Wiley-Interscience,
1976.

Horowitz, Ellis and Sartaj Sahni. Fundamentals of
Data Structures, Maryland: Computer Science Press,
Inc., 1976.

Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language, New Jersey: Prentice~Hall,
Inc., 1978.

Programming in VAX-11 C, Massachusetts: Digital
Equipment Corporation, 1982.

Yourdon, Edward. Techniques of Program Structure
and Design, New Jersey: Prentice-Hall, Inc., 1975.

Titus, Christopher A., et. al. 16-Bit
Microprocessors, Indiana: Howard W. Sams & Co.,
Inc., 1981.

Zarrella, John, et. al. Microprocessor Operating
Systems, California: Microcomputer Applications,
1981.

Hogan, Thom. Osborne CP/M User Guide, California:
Osborne/McGraw-Hill, 1982.

Lions, J. UNIX Operating System Source Code Level
Six, Bell Laboratories, 1977.

AM 96/4116 AmZ28000 16-Bit Monoboard Computer,
California: Advanced Micro Devices, 1980.

"Software Installation Guide: System Management
Operation,"™ VAX/VMS, Vol. 10.

EE4.45 Lab Instuctions, Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October, 1983.

Heidler, et. al. Software Testing Measures,
Griffiss Air Force Base, NY: ROME Air Development
Center, AFSC, May, 1982.

BIB-2

CL e VLY.
e ‘a to P

M

-;- Ny
Za

“
o)

P Cow a0l g«
(3 F)

»

XXX
SECELEE

Appendix A

Initial Hardware Configuration

The initial hardware configuration for the AFIT

Multiprogramming Operating System (AMOS) is based on two

factors:

1. The requirements that were defined for the
microprocessor's computer sytem.

2. The availability of the microprocessor and the
compatible hardware necessary to construct the

computer system.

The microprocessor was selected earlier (Ref. 1) and
is the AMD Z8002. The selection of the 28002 was
discussed on page I1I-14. The Digital Engineering Lab has
an available AMD 28002 microprocessor based computer

system which consists of the following:

1. Heathkit terminal (1)

2. Heathkit H27 Floppy Disk Drives (Double)

3. Am 96/4116A Monoboard with 28002 microprocessor
4. Am 95/6120 Intelligent Floppy Disk Controller

5. Am 96/1128 128K Dynamic RAM Board

6. Am 95/5132 RAM-EPROM-1/0 Board

L0 o % e

,ﬁ

i QEE 7. Amc 95/6011 Arithmetic Processing Unit Board

" = 8. Am 95/6452 Card Cage

3

,g For the implementation of a multiuser environment, it
1 is recommended that the standard multibus serial interface
'i card should be incorporated with the above hardware. More
'§ terminals would also be required. Other units or
v peripherals can be added to the system when the need, or
‘g opportunity, arises.

% The Am 96/4116 Monoboard contains two RS232 serial
» I/0 ports, 24 parallel 1/0 1lines, five programmable
% counter/timer at 4 MHz, and power-fail capability (Ref.
f 21:1). Further specifications can be found in Reference
4 a 21. The specifications for the other AMD products are in
i the following ménuals:

2

;' 1. Am 95/6120 Dual Density Floppy Disk Controller

;3 User's Manual

ﬁ 2. Am 96/1000 Series Dynamic Random-Access Memory
\ Boards User's Manual

S 3. Am 95/5132 PROM/ROM/RAM and I/0 Board User's
: Manual

{: 4. Amc 95/6011 Arithmetic Processing Unit Board

5* User's Manual

%2 S. Am 95/6452 Card Cage User's Manual

R

_:

T A-2

P M B e iR AarD A Sl SR S M NI S, Sty A i i e R N L I P R N N L R I R e] a'a®a

N .
LA

.

SR
27 2L SR S

A

“s

- The following is a diagram of the initial hardware

configuration:

ey

el

» 3
N RT)
-

e
o4

P
-

v
¥

R
N

_ ‘~,'-'Mil‘t;i- 1 Intell- 8 inch
o ~ « o s port | igent Floppy
N | Serial L Floppy Disk
o .- __.ﬁnter- Qoo Disk Drives
.-;‘E - -- mlace by ontrol- 4

: [R i '
"‘\i :

o '

.;‘.'i L - o o

Y5 \‘v.lvﬁuf'.ﬁio’ff | AM z800 Primary

) .t Serial Micro- Memory

ot .

~una A Inter- = ~an~.| Processon

X | face r

-"Q - o‘ '

i O

4

b “~, P4
\ Kl
i O)
i
) Micro- Heathkit
2rinter Processor] Terminal

2o b} Support
DAY Card

\ih
o

R R S NN T IR R SN BRI I N e Tt T T AT A
N> 0.\.-' YN RN SO, .'_\',:-_-_,\ QOISR Wy

] :L.‘ :.-.:.\:-1~ ‘:‘,’}\‘:.\;.-.}- . :_\;_\:\‘\ :."-:.
N » 9l s al

fa g Nl h AL e % %) p g g LY RTINS e, LTeT LA LA i i RAMCENAC A SAE A SR G S PS ICE L L A ~‘--3.3‘

N
b
.
¥
- o Appendix B
::‘ AMOS Structure Charts
N
<
M\
\1
This appendix contains the structure charts for AMOS.

ﬁ} The structure charts contain the modules designed in
S
; Chapter 3 and both the modules designed for the Memory
P~

Management and Process Management. The process
52 descriptions and data flow entries are 1located in
)
N Appendices C and D, respectively.
O Index
33' Execute Bootstrap Program.....l.‘.................... B-G

@ Load AMOS into Memory
’ Execute AMOS

t. Execute AMOS...-.....l.........-...............I..... B-7
s Initialize Data Base
. Parse Command Line
"i Determine Valid Command
'
:e Initialize Data Basel.......Q....................Q... B-8
Xt
¥ Retrieve Data Base Information
- Initialize Variables
g
'f: Parse Command Line..........‘.......l.......O....l... B~9
o
N Poll Terminal Ports
by Process Scheduler

Read Command Line
Build Parse Table

L eisa w g o B oy U g i YA . B e R T a L s antamgrgt gy @ W W W Catu? T ~

-
Lal
.. Determine Valid Command..cccececcsssscscscsssceesesss B=10
XIS
T Log=-in User
Execute User Command

W] Log=-out User
X Help User
™ System Change
» Build Error Message
\ Log-in User-.....'........‘.OI....'.................. B-ll
-
A Set Up User Parameters
o Build Message
A

set Up User Parameters......I....................II.. B-lz
3 Build Message
fi Read Command Line

Check User

- Build Error Message
{ Execute User Command...ccesescecscocscscscsscccscsccccce B-13
lf Validate User Command
% Execute Command

g Validate User Command..........C.‘.........’.0.0....O B-l4

Validate Run Command
Validate List Command
Validate Print Command
Validate Delete Command

atalan..

&

o Validate Run Command..cccecsccscocecescsccsscsscsscse B=15
N Check Filename

N Check Username

= Check Run Filename

4 Validate List Command..ccccccccececcccsccscosscccecsece B=16
"l

N Check Filename

b Check Username

validate Print command...l.......'......'...........Q B-17

. L)
N

Check Filename
Check Username

KA “l SR

\
r B-2

R
:i: . Validate Delete Command..c.cececececccccccccsccacacasas B=18
.

- Check Filename
YR Check Username
(% o0d

.‘:' Check Filename..........o.......l............‘l0...'. B-lg
e Open File

Get Username

Build Error Message
CheCk Username................I..‘.......O...l..-.'.. B-zo

Fo Build Error Message

"""’ Build Error Message.......ooo.-.....0...0..0‘-.'0.... B"21

pfa!

WA Transmit Message

" ,

'vfg' Execute command......................O............... B-22

XN Get File
Process Scheduler

o Y Get File..'l..............‘......................I... B-23

@ Check Space

3 Build PCB

3o Read File

§ Build Error Message

Build PCB.....O..O....O....II....Q...'..l.....l.l.... B-24

ﬂq Insert PCB into Queue

N
%é CheCk SpPaCe.cccccccccecccscscscscscscscascccsccsascses B=25
e Sort Memory Location

o Build Error Message

ﬁ? LOGOUt USeK.cceecescccccccssvosscasasoscsascssascsnsasnsases B=26
ff Clear User Parameters

== Build Message
2 Build Message....'.....I..'.....I......QOIOI.'.O...I. B-27

) Transmit Message

N A TN A O

(O\ 41 OO Y) " O {__. STy e LIRS RN .r..* SRS

o« s . .
......

.

Help User...onoo-.oooo.ocot-.c..lnt...oo...loooooooo.

Get System Information
Get Command Information

Build Message

System Change (Modified)

Verify Authority
Build PCB
Process Scheduler

system change ® © 0 0 0 0 0 00 08 O C 0 OO OO OO OO OO O P08 SO N e LS e

Verify Authority
Configure System

Verify Authority.......o..to.....oO..O.....Q...Qo.l..

Check User's Authority
Build Error Message

Configure System.O...........I.O.......O..I..ol...o..

Build Message
Read Command Line

Process Schedulerl..-o...00........0'.0.............Q

Process I/0 Wait Queue

Get PCB
Run Process

Build Error Message

Process 1/0 Wait QUEUEC.ceccceecrcsscscsscsccscsscacnsancae
Locate Unblocked Process

Delete PCB For 1/0 Wait Queue

Insert PCB into Queue

Get PCB..'..C..OC.I...I..........l..............‘..'.

Check Ready Queues
Get PCB from Queue

Run PrOCess.oooncoioun.Ol'oocl.‘.o....o.....l........

Run System Change

Send File To Port
Write File to Secondary Memory
Deallocate Memory Space ‘

Run Program

(SRS

o 'lf’:

g, T LA N e a e et ot

B-28

B-29

B-30

B=-32

B-33

B-34

B-36

.......................

......

.‘:'r‘zﬁ Clean Up Queueo......oooooccctnoolnooooocnooo.o.o..c. B-37

Delete PCB from I/0 Wait Queue
Delete PCB from System Queue
Delete PCB from ReadyQl Queue
Deallocate Memory Space

N N N AR N .-‘. e S P L AL R S ... A R a™ \.. P --. N —.5- "p '-.-f ,ol S
2, QR O A VAR AN v s RGN K 25N S ORGSR, HA SR HA S

R

e
WS o SN
AP

-

o . .(
-;b 4

4

IR S s M

c NG
RO

S

L)
-t

AR

* 29 4 RN raavih - avavyl) Anreivdal’ a 0 " BRI) R g ,,v:?'v-"-"""-j

t}

'xecute
ootstrap
rogram

1.0

AMOS AMOS
M P———’
-/

~

Y

Load AMOS Execute AMOS
Into Memory

@ 1.1 1.2

. - e - - . AR T BRI P) R I LIS
.".'5.‘- $.‘~ *0.-\~ h . -.'.\}\(X ‘* \'\". ' %Y \-_ o __,' - o ..L:_‘- . AT 4. '__‘ E q' ot _L‘J

T

-~
<

4

AMOS

Execute AMOS

1.2
AMOS Global 4
< Variables © L oCommand Table
i,
(~)
Command
Table
Yy y y
Initialize Parse Command Determine
Data Base Line Valid
Command
1.2.1 1‘2.2 1.2!3
B~=7

- 'S - - »" ", €, - 'S . -" ", -« "
AN G 2R YA R YIS

0 g T 03 gt 00 A - e -3 7 2 o NN MR i g { e e W AW s R Cu r L O T IV R T AT’ © DN ‘.f\'l.'.T

c
A L4
e

"'n ;.D

AMOS Globals
Variables

0
& &

)
AS
AP

.
. [}
rd

R
ry b 4
R
o

I: Initialize
wi Data Base

1.2.1

Data Base Data Base

fnformation J Information
\a —

AMOS Global
Variables

; Retrieve Data Initialize

) Base Variables
K is Information aria

@ 1.2.1.1 1.2.1.2

.
2y
ACS
~l
24
~l
\'.

¥ -

‘f\'.p',"

DR R I T A R I PR RN O L A P I S T . R P C e et e e e
P ol ot Lo AN S QG ~¢\a~(.'-f (A% N A “\ SRS . {J

R P A B LB RN WiV aXd N A O L R N e g g8 TN T LT e T LA

N Command
s Table

Line
0 I 1.2.2
%
N "4

+
] Parse Comman
:

_ Command Table
.‘l 3 e —0

f’*"J \--——\ N Command

Portno Command

(i, y ¥ !
- Poll Terminal || Process Read Command Build Parse
Ports Scheduler Line Table

e T
' J“!:'A 1

Portno

Y

4

SN

o Sl bl W

v}
‘J

o’
-4
L]
S5 %

MR
v B

- £

1'2.2.1 102'3.5.2'2 1‘2.2.2 1'2.2.3

¥

Jele v

X
~' 4
..
s“n.)
&a'

" N .
7 -

. I T I St
. .-_' -.. l.' ._‘ ST et .l.. \-‘. N . \. -" -" ..' --' - .~ . LI ., ..‘ . ..' -.' o
PR BN UG P GIPRI T B V. T)5 Nl G0 Wl SAS Vit S0 TR Gt O TR 0 W QUi G I Jows

.- . " — -~y T A i v o b i i S Tt A i e
L. WLSLY U g nh 4 T Vg G e T N TR TR T T A AL A R R L “L .

X ::..‘.". Command Table

§§ ' Determine
o Valid
", Command
1 L] 2 []
)
;3 ntax Error
* =t
¢Por‘t;no

2 °) ommand Table
; r EEE——
»

!

A__
of

~\

—

@ -
-3 Portno Command
e Table Command

% Table

@ A v L J [

i ' Log-in User Help User Execute User

Command

Sed e

1.2.3.2 1.2.3.3 1.2.3.5

L4

B
‘l

P

L | r
Log-Out User

D
' .J ... i

System
Change

1.2.3.2 1.2.3.4

LYy

ek

g

C4d

Ly

£
L]

. -‘ .A.
(]

Wy

@is a connector to the Build Error Message
Module.

R

2rx K

<

"l

)
. ¢
> T T T P T S B Tt S S S) L T e e
-~‘q‘\- ~._-.\v AR RN \-..'-.~- \"‘ B A N I AN P A T AR PRNSY

. e e e T T e e K
HAENEar Y -..-M(.Hﬁmnn\mh&mﬁ%un.-mmhw

(S

2, A

'Y ,‘l

ortno

N7 Log-ianser

2% 1.2.3.1

R Portno Logged-In

- - 4OJ K& el

y }3 Set Up User Build
% Parameters Message

Iy @ 1.2.3.1.1 1.2.3.1.2

-4
\._{~. !.

N
Lz

ot e ol AT
; W)

- . . ®

el .
D R AT

ATV PR PR, PREAL PR RPN B

a VeV, s MDA SEE A AN AR -'-'.‘.‘-‘s'--‘-'.'-‘-"-'- «%e® e “atwa. - - a™e PRSP AL WA TR G

AR Portno

™) Set-up ygep
. Parameters
1.2.3.1.1

-:.g «-Portna o—illegal Uger
9)

55 Username Legal/
) Portno & Tllegal

e { Password User

A

ji Build Read Command Check Build Error
3 Message Line User Message p
G:s 1.2.3.1.2.]| 1.2.2.2 1.2.3.1.1.1. i.i?i.j

~
DOV
«® Ll
.‘,:.'
".
X
.

"

-

r

Bz

.. !
B

.n
P
C .
I
L5
“. .
el
.~

=%
ﬁ.‘
* e

[N

St

«
Y

2y

G ALY
ae)

Al

L

2 J"

7.

.:.'

Command
Table

Execute
User
Command

1.2.3.5

Command

_J/

L 4

»

Valid/Invalid

Validate
User
Command
1.2.3.5.1

Command
gable

Execute
Command

1.2.3.5.2

- - B . . l‘ . l,
ARRATON . | RN

>
&

. 4
RRARRR W
-‘.‘;":i."

s

)
>,

»

AERCR AR
PR)
L4 ‘.'-.l.

e .'\}-

”'?

XX

¥ s A [s .' [
[PRATIA

O R

Command Table
-

Table

Invalid

Command I IValid/

User

Validafe

Command
1'2'30

5.1

Command Table

R

o c >
- —\
valid/
Invalid
Command
gg‘g’l“znd Table Valid/
Valid/ Invalid
Invalid
¥ Y
Validate Validate Validate Validate
Run List Print Delete
Command Command Command o)
1.2.3.5.1.1 || 1.2.3.5.1.2 || 1.2.3.5.1.3 l'g'tgn'l%.r'lg'“
B-14

J'c’qf

m‘.ﬂ?&ﬂ:&. oA

A\
[
*,

XXX 4N

Command
& Table

' XX XA
oy
»

Valid/Invalid

- o %0 %
Pl

1 4a

—7

Validate
Run
Command
1.2.3.5.1.1

3 Valid/ KY
Invalid

Jilena.me ¢ o Filename N

=

‘L.A.‘-h\‘-l

"
Y

—
3) 4
File's Username T Valid/

File's Invalid
Username Portno's

Username
) Yy

d Check Check Check
Filename Username Run
. Filename

“ 1.2.3.5.1.1.1 1,2.3.5.1.1.2 2.3.5.1.1.3

A o

" s
AR F

e

b\ .s ;

* -‘.ﬂ“"\
» " ‘.

A Command| | }valida/
- Table Invalid

POV

Ly~ 7 -
ol
“

LA A

<&
2’

)

Validate
List
Command

1.2.3.5.1.2

L% y

S
el

valid/
Invalid

Fllename Té;le s Username

Portno s W
Username valid/

Invalid

%y

WXL

s S

ile 8
Username

PP AN

s & 2

o a S d

' ¥
1y Check Check
% Filename

Q& Username

r) 1.2.3.5.1.1.1 1.2.3.5.1.1.2

“«
]

&
hJ

Ao
i

| ALY

B-16

P

.

» R I T AL PRR _.‘.‘.'_. .'_. ety Ce e . AN
TSI IR G N T e b A s AT N L N KR W SNy .\.x.x‘ ~

>
(Y
\'\

P . 0
O, s W
[t "L"L"L"_

‘-')
.y .l' } ‘A, ‘\

P)

4 "f..f.'{

LA
RV 3 P]

~e

'~ i".‘ ."..‘.. O
€372 ¢ a .

S
0

,{ » "'t|~|
AN, T4

-2,

e s

e &L 1

A AN, A0, 0,

»
G
4

‘l

KRR 4

1.. A "‘..':. ’ .' -.
A PO

""‘4‘! Yy
Ao

s
EARLLEE

N €

; ’
.

»

o

K

B e Mgt g g W W W v Wa W gy T T ¥

- CaN Y At ¥

Valid/ Command
Invalid Table

Validate
Print
Command

1.2.3.5.1.3

Valid/ valid/
Invalid Invalid

Tﬁile 's User?la.me o—~rorrros—)
Username
Filename File's
sername
"
Check Check
Filename Username

1.2.3.5.1.1.1

1.2.3.5.1.1.2

B-17

o

OO

;§§

. v
' .‘, .f' c('n":‘ ‘:“n

\"’J Y

L (2

Il

Nasen

-,Ao;'

»
5

Valid/ ommand
Invalid able
Validate
Delete
Command
1.2.3.5.1.4
valid/ Valid/
Invalid Invalid
o s & >\
File's Portno's
Username Username
Filename Filename
f&
[Y's) Check Check
i Filename Username
L0203n5010111 10203.5.1.1:2
Ry
.._:._'
B-~18

L

.......
............

. ~
AR IR IR M

e

™
:- ‘.‘i
RN
A

LA Lo,

s
%

[AS ~1‘:‘
PPy

h

tkS
»
e
L
.
o

-

Filename I

File's
User
name

Invalid

Iyalid/

Check
Filename

1.2.3.5.1.1.1

Valid/
Invalid

y

ot
File
Descriptor

Filename

Open
File

1.2-305.
1.1.1.1

| J

¢ 9

alid/
Invalid

File's Username
————rree)
N

File
Descriptor

Get
Username

102.3'5‘
1.1.1.2

Invalid

Filename

Build
Error

Meg7383. 5.

1.1.1 .

..............

...............

W

.~

e a®

S

o

Fadn <3y File's Portno's valid/
: Username Username Invalid

Check
Username

‘ Lg
Ay &4

Ve l-"

1.2.3.5.1.1.2

7?

,

Y
RO

Invalid
!As User

\

b . Build Error
~ Message

¥ 1.2.3.5.
1.1.1.3

*
‘:.;‘
& fd

[V

L
;,;‘J<l

PV -
Xy,

P
PO LE
Lo N T A

|

s
(3 /Y

]
.

]

w
|
N
o

»

L) ‘l
-

2 s ¢

.‘: *g

.

.“‘

[P % & 4

bg

('.‘ -

L N

s v«
..J..J."

LY
%\';.-.
.

s.\.‘

NaBathu® B, Agrha A S A S YA DA AR S A R AR L D e

rror Syntax
Flag Error

Build Error
Message

1.2.3.5.
1.1.1.3

?

Error
Message

\

Transmit
Message

1.2.3.1.2.1

A

R S o VA S e A S Ay : N e L e L
A

Dty

~_ W, R, W

LA A A

(f-

!

Command
‘Table

Execute
Command

3.5.2

Process
Scheduler
102:3.502'2

-
I
o
§ o
m.l_
L0 -
o« .
O T* N
oo
v .
G4 M
[.
N
-«
nn-:- '\ \-IA‘ - g re n\ L et
\N'. .\1 -\.\ \ \P\J.w\ l.fN(‘_\h-)\“n:N l\hf\\%f v. u.c.lq,.. Aei

x..fx
LN
Vs

A" a VO AAARR: MAASUADNC . - RV MY TR AR \~ AR W
A-\..o- - <-\.-v (NN -.f\-c I\Ih. .. - .-. O ;R.-& A .--\f\f.tf. Dy .
g

> “‘NNN\ 3

4 A - RO AL ¥+ N

£h-- NN

.n\ :-“:-) '..':;‘:. .’ \;,.

A YOOI RRATLSC YA PR Y
(‘(u, I \)'h) Y

) .".“.“a’a"t’l— "‘ .J* .

NN

A -.,.g
Bt A Ay

P er Yy

l“ : M l“l“.;.’..l.

VaAALY !

RO

L]

5 4

‘l
(N

Command
Table

Cet
File
1!2.305.2'1

‘File Descriptor

©

A

i

No Space Avai}able

N

L -
Command
Table

|

File

Descriptor

Check
Space

@ 1.2.3.5.2,

Builgd
PCB

1.1 31.2.3.5.2.1.2)11.2.3.5.2.1.3 1.1.1.3

Read uild Error
File Message

1.2.3.5.

-
I-f..

“« "y

TN L e N T B TN I T
) W, NS W N TSP 2 P AR, Sl Y 1S

Command
Table

Build PCB

1.2.3.5.2.1.2

PCB

 J
Insert PCB
Into Queue

1.2.3.5.

2.1.2'1

AN MM SRS AN Lo A AL S LA L S A | b it i) s Ea ", s

File
Descriptor

Check
Space

Not-Too-Large/ Not-Too-Large/
. Too-Large — Too-Laggs
oq N
Process Ordered
Memory Memory
Locations Locations
1
Sggzagggg:y Build Error
1.2.3.5. Message
. 2.1.1.1 t.2.3.5.
(i;b 1.1.1.3

et A e T e L S
L.‘-"~1.'11. R VAV R AR AR

. v . ~
- .‘.'.'..'.._‘j
ey T
. Al et ataNav,

e p-asran s cuiitairdav it v R MG h St e e i O n) S RACT O M DA PN

i std S ol v T T T T e
A i e S el SR PN N _'._'.,._T

vy
R
A
. RS
T
. Cle
- "y
r
¥
= .,
.t
o~y

- Portno o éogged-out’

Portno

Logout
User

1.2.3.2

v

Clear User
Parameters

1.2.3.2.1

!

Build
Message

1.2.3.1.2

g
-~ B-26
B
-
PRI TR S T I Ty AR R W VS LT e P . e B R Y A W N "
N Y y . > 1y Y ~ - . . B S A P P I - . STt
’) '~ " ! ‘.t Nk Ao Sk .HA%'J‘_\’A.(;‘(.A\’.\{-';.';.. S ad P RV YNNI TIPS, POV Y NN A x..:._:;.&_.:‘{

0y
.

N
s 2

.
'

L f/lessage Code

Build
Message

1.2.3.1.2

Message

4

Transmit
Message

1.2.3.1.2.1

0
.
‘s ‘s

DyONAC)
AN

‘I b
D]
R

b
i “. o -'\ o RO

DMMOOACREREN
A 82 L

‘l""

RN S N LN

-

e
%t

[\

NN OGN A P RG0S SO SRR

RO AT
3 A W "

Command
Table

Help
User
1.2.3.3

System Help
- -0

Command Help

O —
5)
Get Get
System Command
Information Information
1.§:3.3.1 1.2.3.3.2
System
Information Command
Information
- —
Build
Message
1.2.3.1.2

' e Command
baan T Table

System
e Change

1.2.3.4

- 4?
N Portno's
A <}Isername

(s)

2! G;:ﬁ%ﬁ Superuser’s
N User Username Command
Ak Table

. i | '

! Verify Build PCB Process

S8 Authority Scheduler
o

@ 1.2.3.4.1 1.2.3.5.2.1.2 1.2.3.5.2.2

" RS LIy S rértrestre -~ T VAt a LV DERONIDGC AL e AR 6 RN Sl A At Ol it 2 Nl .T.T

.

e

o -

I N Command
RGN Table

v

-::: b System
a Change

L 1.2.3.4

£ Portno's
2 Username

' _J
Yo A - '—4‘)
> Auth./ Superuser's Command

N Unauth. Username Table
A User

SOA)

31 :

A Verify Configure
@ Authority System
1..-“.‘ - 102-3-“01 102-3-4.2

-
e
4 6 't

] f;'l:.z AR
SR M ey

> -
l.

D
« & & » o
Tl LN

K
A

. SO

Co 1 310

L

-

LA
-~

(S
}

(3
A
» ‘~ .‘. -

oy

k]
v

Pyt & 5
A]
TR NS

A

»
“ud Y, N O S R] PR I R L S T R [PAREE NE ET R UL S S B T R it e
y"\-’ ""V": -. i,'-\.' - ~:".& R R R WA RO R R AR SN e E\(: S]

basotoinleto e tesadatas ans ot alas D

.....

L3
.
'3
Y
a
.
e
[y
s

s T P

.
o,

s A"

s %

l'.
LAty

Authorized/ Portno's Superuser's
Unauthorized Username Username
& User

~

. Verify
Ny Authority

1.2.3.4.1

‘?;4

o Portno's
g Username

~°
"M

- Auth./ ' 9
:& Unauth Superuser's
- User ' Username

L5?nauthorized User

o) Check User's Build Error

- Authority Message

- 1.2.3.4.1.1 if%g

aVa Ve ¥ W w_ .

Command
Table

Configure
system

1.2.3.#.2

New System
Information
—— 0

System
Change

y

Build

Message

1.2.3.1.2

-)

Portno

’,
LN

oy

N

Uiy

» :l ‘l .l ‘.C ‘, .'

.
«Ta's’a"ae

LA

[

SN

PRRITS S TS
DR TS

EAPRES T
P N PN .

B-32

RN { KO

LI
8.,
i
.
1

Process
Scheduler

1.2.3.5.2.2

@

[L(Q.(l_.‘l ,'.l "

Py

Ko ¢

I/0 Wait Queue Process Aborted
s —_—

[h

A

PCB PCB

PNl

Process 1/0 Get PCB Run Process JBuild Error
Wait Queue Message

1.2.3.5.
1.2.3.5.2.2.1}]1.2.3.5.2.2.2.2.3.5.2.2.3 1.1.1.3

L

a

AN

L%

e
S afs NN

-

Y YA

XX

o

YN0

ey
.44
ko

b) el

f
’-
’-
’

.

v‘ 4 %
(/ el
R

Queue

II/O Wait

Process 1/0
4 Wait Queue

.2.3.5.2.2.1
K 3

o

I/0 Wait Queur—)/
)

TN+

'

PCB PCB
PCB

Kby Sy s

Y

Locate Delete PCB Ingert PCB
Unblocked From I/0 Wait Into Queue
Processes 1 Queue 1.2, 1.2.3.5.

6 2.3.5.2.2.1.1 | 3.5.2:2.1.2 2.1.2.1

A

PRI B Wy

” A‘..
P I W9) 4

‘.

[P Y
a’-

s
»
(]

% B-34

WL - ~ SRR N T I PR R

T L . PRIRRR
WA IE IR M.\.A’s—,&l’l&*&m_\mf RGN0 20 G '_'-.\f.\ Y }. e T T Ny

L

3y

ag il a ANy

1 o e o
, of,
:

-.. gL 7P 2

L)
B

3 w i
Al A

DD ey

»

LS L]
KF IV

“'- 'J_.L.:‘?‘)-" ;

YOO

e AL OLAELL LIRSS A MES

B -

Queue EmpEy/Not EmptijJ i

4

PCB

Get
PCB

1.2.3.5.2.2.2

f

!

\

)

Queue Number

Check

Ready Queues

1'2.3‘5!
2.2.2.1

Queue Number

PCB

v

Get PCB

From Queue
1.2.3.5.
2.2.2.2

‘}j
S
5 PCB
ji
‘J >
X Run
) Process
¢
) 1.2030502-2-3

¥
(- 4 4*‘ R

P2 A
_)

o

K]

33 PCB PCB PCB PCB PCB

2 Y y

N Send File Write File eallocate

3 To Port To Secondary emory Space

NI 1.2.3.5. Memory 1.2.3. 1.2.3.5.
|[; 2.2.3.1 5,2.2.3.2 2.2.3.3

GRS

5 ‘

Run System Run
3 Change Program
‘j 1.2-3.5.
L] . 04

1 1.2.3.4.2 2.2.3
%
N -
el
o
,
-
b -

O
<, LR
K% "‘:"
-.
-
L
! B-36
ﬁ&x¢Mh3§{ﬁﬁam&glg;;f&&&&}&édii?LiLLLJ'IhLLLLLLL;;JL;;'

() .' .' 3
AN

>
[

o8
AW XA

-
A-F 4,
s

B

¥, M BA
Sres S
- R AR

LAy

|

IPCB

Clean-Up

Queue

0.0

L» PCB
e e

PCB

~

'

Delete PCB Delete PCB _ |[Delete PCB

From I/0 Wait{ From Sysgem

0.1 0.2

From ReadyqQl

0.3

Deallocate

Memory Space
1.2.3.5.
2.2.3.3

]
A

s

“,

»
[J
Pt

#
»

PR
"

<

s
i

-

N, . o
.
iy T e

Appendix C
Process Description for AMOS

This appendix contains the process description of
each structure module. The structure charts are located
in Appendix B.

PROCESS NAME: Execute Bootstrap Program

PROCESS NUMBER: 1.0

PROCESS DESCRIPTION: This process 1loads the operating
system from secondary memory into main memory. Upon
completion of this the operating system is then executed.

PROCESS NAME: Load AMOS Into Memory

PROCESS NUMBER: 1.1

PROCESS DESCRIPTION: This process retrieves the operating
system from secondary memory and places into main memory.

PROCESS NAME: Execute AMOS

PROCESS NUMBER: 1.2

PROCESS DESCRIPTION: This process executes the operating
system that has already been loaded into main memory.

PROCESS NAME: Initialize Data Base

PROCESS NUMBER: 1.2.1

PROCESS DESCRIPTION: This process sets the initial values
for specific data items used by the operating system.

PROCESS NAME: Parse Command Line

PROCESS NUMBER: 1.2.2

PROCESS DESCRIPTION: This process polls the on-line
terminals, reads the next command line, and parses the
command line into a command table. Process scheduler is
called when terminals are idle.

PROCESS NAME: Determine Valid Command

PROCESS NUMBER: 1.2.3

PROCESS DESCRIPTION: This process determines the requested
command and then checks for validity. 1If the command is
found to be valid, it is then executed.

PROCESS NAME: Retrieve Data Base Information

PROCESS NUMBER: 1.2.1.1

PROCESS DESCRIPTION: This process retrieves the
information that 1is used to initialize the operating
system's variables.

b d

P

.

~
L]
A

\‘

PROCESS NAME: Initialize Variables
PROCESS NUMBER: 1.2.1.2

PROCESS DESCRIPTION: This process initializes the
operating system's variables with the Data Base
information.

PROCESS NAME: Poll Terminal Ports

PROCESS NUMBER: 1.2.2.1

PROCESS DESCRIPTION: This process uses a algorithm to poll
the terminal ports to check for user requests.

PROCESS NAME: Read Command Line

PROCESS NUMBER: 1.2.2.2

PROCESS DESCRIPTION: This process reads the command line
from the given port.

PROCESS NAME: Build Command Table

PROCESS NUMBER: 1.2.2.3

PROCESS DESCRIPTION: This process oreaks the command line
into separate parameters. These parameters are then
placed into the command table.

PROCESS NAME: Log-in User

PROCESS NUMBER: 1.2.3.1

PROCESS DESCRIPTION: This process checks to see if the
user is already logged-in. If found to be logged-in, then
control is returned to calling module. Otherwise the user
is attempted to be logged-in. The user is prompted for
the username and password and reads the user's input. The
username and password are verified. 1If they are valid,
then the user block is initialized.

PROCESS NAME: Log-out User

PROCESS NUMBER: 1.2.3.2

PROCESS DESCRIPTION: This process clears the user block
for the terminal which the log-out command originated.

PROCESS NAME: Help User
PROCESS NUMBER: 1.2.3.3
PROCESS DESCRIPTION: This process provides the user with
the requested system or command information, if available.

PROCESS NAME: System Change

PROCESS NUMBER: 1.2.3.4

PROCESS DESCRIPTION: This process verifies that the user
is the 'Superuser.' If found to be the 'Superuser,' then
the system is reconfigured with the changes specified by
the 'Superuser.’

.
A .
'b'l"J.- Y Y

Civ o i3
AN

aa
B (e o A

I
‘.'\".'s' WAL

"

-._:%.-‘:,_- o ‘.J"‘.-\. e A AT T e T T S ST R
3 o o . . e A R .

-

PROCESS NAME: Execute User Command

PROCESS NUMBER: 1.2.3.5

PROCESS DESCRIPTION: This process determines if the
specified user command is valid. If the command is valid,
the command is then placed into main memory for execution.

PROCESS NAME: Set-up User Parameters

PROCESS NUMBER: 1.2.3.1.1

PROCESS DESCRIPTION: This process initializes the user
block parameters.

PROCESS NAME: Build Message

PROCESS NUMBER: 1.2.3.1.2

PROCESS DESCRIPTION: This process constructs a message to
be sent to a user and calls the Transmit Message module.

PROCESS NAME: Clear User Parameters

PROCESS NUMBER: 1.2.3.2.1

PROCESS DESCRIPTION: This process clears the user block
parameters for the terminal which the log-out command
originated.

PROCESS NAME: Get System Information

PROCESS NUMBER: 1.2.3.3.1

PROCESS DESCRIPTION: This process retrieves the requested
system information and sends the information to the user.

PROCESS NAME: Get Command Information

PROCESS NUMBER: 1.2.3.3.2

PROCESS DESCRIPTION: This process retrieves the requested
command information and sends the information to the user.

PROCESS NAME: Verify Authority

PROCESS NUMBER: 1.2.3.4.1

PROCESS DESCRIPTION: This process verifies that the user
is the 'Superuser.'

PROCESS NAME: Configure System

PROCESS NUMBER: 1.2.3.4.2

PROCESS DESCRIPTION: This process configures the system's
Data Base with the new information that is given by the
'Superuser.’

PROCESS NAME: Validate User Command

PROCESS NUMBER: 1.2.3.5.1

PROCESS DESCRIPTION: This process checks for validity of
the specified user command (i.e. RUN, LIST, PRINT, DEL,
and DIR).

.......................

DCAACA ORI

PROCESS NAME: Execute Command

PROCESS NUMBER: 1.2.3.5.2

PROCESS DESCRIPTION: This process retrieves a file and
calls the Process Scheduler module for execution.

PROCESS NAME: Check User

PROCESS NUMBER: 1.2.3.1.1.1

PROCESS DESCRIPTION: This process checks the user table to
determine if the user is allowed system access.

PROCESS NAME: Transmit Massage

PROCESS NUMBER: 1.2.3.1.2.1

PROCESS DESCRIPTION: This process sends a message to the
user.

PROCESS NAME: Check User Authority

PROCESS NUMBER: 1.2.3.4.1.1

PROCESS DESCRIPTION: This process checks to see if the
user 1is the 'Superuser.'’

PROCESS NAME: Validate Run Command

PROCESS NUMBER: 1.2.3.5.1.1

PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate List Command

PROCESS NUMBER: 1.2.3.5.1.2

PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate Print Command

PROCESS NUMBER: 1.2.3.5.1.3

PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate Delete Command

PROCESS NUMBER: 1.2.3.5.1.4

PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME:Get File

PROCESS NUMBER: 1.2.3.5.2.1

PROCESS DESCRIPTION: This process checks the space,
retrieves a file from secondary memory, places into main
memory, and builds a Process Control Block.

B N TR W N S

AN L
VA R LR A W

''''''''''''''''''''

)
Y
r
.
[l
.
’
'
’
r
’
L[]
[
Py
s
?
0
»
£
.
e
.
2
.
S
.
.
’
$
.
.
v
o

1\'

S

S

“

N

o

Py e PROCESS NAME: Process Scheduler

- “53' PROCESS NUMBER: 1.2.3.5.2.2

T PROCESS DESCRIPTION: This process retrieves the unblocked
0y Process Control Blocks in the I/0 Wait Queue and places
- them into the Ready Queue, gets the next process to be
- executed, and executes the process. If there 1is no
" process that is ready to run, then control is returned to
- the calling module.

PROCESS NAME: Check Filename
.. PROCESS NUMBER: 1.2.3.5.1.1.1
" PROCESS DESCRIPTION: This process determines if a file is
. located in secondary memory.

PROCESS NAME: Check Username

PROCESS NUMBER: 1.2.3.5.1.1.2

PROCESS DESCRIPTION: This process determines if the user
has authority to access the file.

pry

1 DASEW

PROCESS NAME: Check Run Filename

PROCESS NUMBER: 1.2.3.5.1.1.3

PROCESS DESCRIPTION: This process determines if a file is
an executable file.

L~
SN

P

PROCESS NAME: Check Space

1 PROCESS NUMBER: 1.2.3.5.2.1.1

. ‘[; PROCESS DESCRIPTION: This process determines 1if there
exists enough space for an incoming file.

- 42
_ 4

PROCESS NAME: Build PCB

o PROCESS NUMBER: 1.2.3.5.2.1.2

PROCESS DESCRIPTION: This process builds a Process Control
Block for the command.

PROCESS NUMBER: 1.2.3.5.2.1.3
PROCESS DESCRIPTION: This process reads a file from
secondary memory and places it into main memory.

7 PROCESS NAME: Read File
)

PROCESS NAME: Process I/0 Wait Queue

PROCESS NUMBER: 1.2.3.5.2.2.1

PROCESS DESCRIPTION: This process takes those processes
that are finished with their I/0 wait out of the I/0 Wait
Queue and places them into the appropriate Ready Queue.

PROCESS NAME: Get PCB

PROCESS NUMBER: 1.2.3.5.2.2.2

PROCESS DESCRIPTION: This process retrieves the PCB of the
next ready process to executed.

R A . N " .
SAARANIAY - (SRR, -

Les an

b A
O

=g~
('

”v‘l

4

S By

l‘l

¥ w s
AR
*, 0 e

- ‘l‘ ;.'. 7.

_ »
[y N S g iy

B - (WYY Y

e
>,

PROCESS NAME: Run Process

PROCESS NUMBER: 1.2.3.5.2.2.3

PROCESS DESCRIPTION: This process executes the process of
the given PCB.

PROCESS NAME: Open File

PROCESS NUMBER: 1.2.3.5.1.1.1.1

PROCESS DESCRIPTION: This process opens a file located in
secondary memory for reading and writing.

PROCESS NAME: Get Username

PROCESS NUMBER: 1.2.3.5.1.1.1.2

PROCESS DESCRIPTION: This process gets the username of the
requested file.

PROCESS NAME: Build Error Message

PROCESS NUMBER: 1.2.3.5.1.1.1.3

PROCESS DESCRIPTION: This process constructs an error
message that is the transmitted to the user.

PROCESS NAME: Sort Memory Locations

PROCESS NUMBER: 1.2.3.5.2.1.1.1

PROCESS DESCRIPTION: This process arranges the memory
locations of all jobs in main memory from smallest to
largest.

PROCESS NAME: Insert PCB

PROCESS NUMBER: 1.2.3.5.2.1.2.1

PROCESS DESCRIPTION: This process inserts the given PCB
into the appropriate queue.

PROCESS NAME: Locate Unblocked Processes

PROCESS NUMBER: 1.2.3.5.2.2.1.1

PROCESS DESCRIPTION: This process locates all PCBs in the
I/0 Wait Queue that are no longer in an I/0 wait state.

PROCESS NAME: Delete PCB From I/0 Wait Queue

PROCESS NUMBER: 1.2.3.5.2.2.1.2

PROCESS DESCRIPTION: This process deletes the given PCBs
from the I/0 Wait Queue.

PROCESS NAME: Check Ready Queue

PROCESS NUMBER: 1.2.3.5.2.2.2.1

PROCESS DESCRIPTION: This process checks the Ready Queues
for a ready PCB and returns the Ready Queue's number.

PROCESS NAME: Get PCB From Queue

PROCESS NUMBER: 1.2.3.5.2.2.2.2

PROCESS DESCRIPTION: This process retrieves the PCB from
the given Ready Queue.

Appendix D
Data Dictionary for AMOS

This appendix contains the data flow entrys that are

passed between the structure chart modules. The structure
charts are located in Appendix B.C

1.

DATA NAME: AMOS

This is the object code of the operating system.
It is transferred to main memory (at a set location)
from secondary memory.

DATA NAME: AMOS-Global=-Variables

These are the data items that are used by the
operating system and contains all of the data flow
items.

DATA NAME: Authorized/Unauthorized-User
ALIASES: Error-Flag

This is a flag that informs the operating system
that the user, who is requesting a system command
operation, is or is not the 'Superuser.'

DATA NAME: Command-Help
This is a request for command information.

DATA NAME: Command-Information

This is the command information that was
requested by the user

DATA NAME: Command-Line
ALIASES: New~-System-Information

The data sent to the operating system by the
user that is terminated by a carriage return. It
will contain a command and any necessary parameters.

DATA NAME: Command-Table

All of the parameters from the Command Line (6)
and any other parameters that are acquired by any
promting routine.

P

.y 0
gt -“; L '.II

o0 Y

.4

Kows
.. ‘.

A
-
. v‘ ‘_

o4,

[

s
4§ 4
- l‘.{ [

- [y '.‘ ’I .‘
‘s

£ O
. ‘.o
a’a
A
%% ata

s s b
‘l ’]
l‘-.l -

T’ »

'. -

)

10.

11.

12.

13.

14.

15.

16.

17.

DATA NAME: Data-Base-Information

These are the initial values that the
AMOS-Global-Variables (2) are set.

DATA NAME: Error-Flag

This is a fiag that is sent to the Error routine
to build an Error-Message (10).

DATA NAME: Error-Message

This is a message informing the user that an
error has occurred and what it was.

DATA NAME: Filename

This is the name of a file that has an operation
that is to be performed on it. (such as Run or List)

DATA NAME: File-Descriptor

This is an integer indicating where the file is
located in a buffer of all open files.

DATA NAME: File's-Username

This is the username of the file that is being
requested by a user.

DATA NAME: 1I/0-Wait-Queue

This is the pointer to the I/O Wait Queue.

DATA NAME: Legal/Illegal-User
ALIASES: Error-Flag

This is a flag indicating that the user has
access, or doesn't have access, to AMOS.

DATA NAME: Logged-In
ALIASES: Message-Code

This is a flag indicating that the user has been
properly logged-in.

DATA NAME: Logged-OQut
ALIASES: Message-Code

This is a flag indicating that the user has been
properly logged-out.

K7~ 3 4 e M DA W P e e B AR LA ILG A MR A A S A A A E A A AT

I8
)
..!.-)
-Is? 2 18. DATA NAME: Memory-Location
o» '.---",.n‘
- b The location in main memory that a file is
ol located or is being sent.
o, 19. DATA NAME: Message-Code
193
-3 This is a flag that is used by the Build Message
routine to build a message that is sent to the user.
£ 20. DATA NAME: No-Space-Available
> ALIASES: Error-Flag
v
. This 1is a flag indicating that there isn't
enndugh available memory space for the execution of
o the process.
»e¥
.Tﬁ 21. DATA NAME: Ordered-Memory-Locations
{Zﬁ This is the table of the available memory
I partitions ordered by size and is used by the Memory
s Manager.
XN
A
o 22. DATA NAME: Password
- This is the user's unique key to the operating
G;; system. It can be changed by the user and is entered
&C o by the user.
S
{ﬁ 23. DATA NAME: PCB (Process Control Block)
< This is a table that is used by the Process
o Manager to keep track of all the processes that are
5;1 submitted to run.
w 24. DATA NAME: Portno
f The port number that a message is being sent or
o a command is being received.
fﬁ 25. DATA NAME: Process-Aborted
o ALIASES: Error-Flag
l{l
‘“' This is a flag that is sent to the user
ey indicating that the submitted process was aborted.
'QE 26. DATA NAME: Process-Memory-Locations
T
S This is the table of unordered available memory
.t partitions.
RN
\j: -
X
- D-3
>
Hoy
e e o A ™ AT QTN AT e N AL N NN

) . . T TP Y, g
- » . B -’ . -’ - L L M P P I B Tl) CataT . [N I N L -"

KA 27. DATA NAME: Program-Too-Large-For-Memory
RS ALIASES: Not-Too-Large/Too-Large,
) Error-Flag

Tt o s L

“~ This is a flag to indicate to the Memory Manager
N that the incoming file is not small enough for all of
<. main memory.

AN

28. DATA NAME: Prompt

:; ALIASES: Message, System-Change

[
% This is a message to the user to indicate that
3 information is to be entered. This information can
» include the Username (34) or Password (22).
¥ 29. DATA NAME: Queues-Empty/Not-Empty

XL This is a flag indicating that the Ready Queues
", are empty, or not empty.

! 30. DATA NAME: Queue-Number

o This is a number that indicates to the Process
- Manager which Ready Queue has the next process to
- run.

| ‘;b 31. DATA NAME: Syntax-Error
~§ ALIASES: Error-Flag
'2 This is a control flag to indicate that a
W% command is not found. This control flag is

transmitted to an error handling routine.

o 32. DATA NAME: System-Help

o

o

2 This is a request for system information.

)

Ld

33. DATA NAME: System-Information

} This 1is the system information that was
S requested by the user.

N

5 34. DATA NAME: Username
- ALIASES: Portno's-Username,
ot Superuser's-Username
'f This is the user's indentification used to log
20 onto the operating system. It cannot be changed by
e the user and is entered by the system's 'Superuser.’
r
\.' SN,

R

-\. *

.‘.I

o

~

O
1
>

AN AL,
. & 4 Yo . »
RRLAL (T

’
-

ARy ‘X
1)
AN sfl.'g [N

e

.‘
L

AL

'~ ,

By

U

Y

.-“.:1 3 5 .
* P
DAY
36.
A

AP AR A4 30 PN QL . e T d T W AR AN A S A A)

DATA NAME: Valid/Invalid-Filename
ALIASES: Error-Flag

This is a flag that indicates that the file the
user has requested an operation on exists, or doesn't
exist.

DATA NAME: Valid/Invalid-Username
ALIASES: Error-Flag

This is a flag that indicated that the file the
user is requesting is, or isn't, their file.

A g T T ¥ LOadC X Dl Jalt el il i SN Sult Xl gt i Sl il S N DA A A T R AT .. ORI A

S S Appendix E
~ AMOS Source Code

"‘ This appendix contains the source code for AMOS. It

N is in the file AMOS.C on the VMS 0/S's disk storage. The

<3 documentation in the code consists of a header for each
subroutine and comments throughout the C language code.
X The header is based on Dr. Gary Lamont's standards that

. were given in EE 6.86, Information Structures.

7L
’ﬁi‘lln{- .

e

il

.
"'n ‘)
.0,
&

VN,
R

oy)
“ 2
AL -

>
T LS

s
>
B
.
s 4 A
LR

v - - .
7 s V% % e
. RO
‘J..'-D -
' '_l- .'-

:.' T,
A ")
Fainye/a Tl

|

/***************************i************************************/

/* Title: AMOS: AFIT Multiprogramming Operating System */
/* *
/* Date: 31 Auqust 198 */
/* Version: 1.0 */
/* %/
/* Filename: AMOS,C */
/* Punction: This is a multiprogramming operating system */
/* for sixteen-bit microprocessor systems, */
/* Calling Subroutines: When implemented on a micro- */
/* processing system, a boot program will load */
/* this 0/S and will proceed to execute the 0/S */
;* Authors: Paul E. Cruser and Ronald K, Miller */
* *
/**/
/**/
/*%/
/***i/
/* The following is the Global Data Base that will be */
*

/* used throughout the operating system,
/***t***f/

/**/

#include stdio.h /* standard input-output library */
#define superuser “"SUPERMAN" /* this is the superusers*/

/* username */
$define spxpass "MOONBEAK" /* this is the superusers */

/* password */
#define userl "CRUSERP " /* username for first user*/
#define user2 "MILLERRK" /*username for second user*/
#define passl "GCS-&8D " /* password for first user*/
#define pass2 "LINDAWM " /*password for second user*/

#define noports 4 /* this is the number of online */
/* terminal ports */

#define deviceports 0 /* this is the number of online */
/* device ports

#define begin { /* personal preference for */
#define end } /* easier coding */
#define BEGINUSER 13 /* used in the directory to mark*/
/* the column */
#define ENDUSER 20 /* of the beginning and ending */
/* of the username */
#define DIRTRACK 0 /* Directory track number */
#define DIRSECTOR 0 /* Directory sector number */
#define ERRCR -1 /* f£ile can't be opened flag */
#define NUMSEC 16 /* number of sectors on a disk */
#define BUFLENGTH 40 /* number of buffer rows for the*/
/* directory
#define BUFSIZE 24 /* number of buffer column f.t.d*/
#define MESSIZE 40 /* size of the message */

#define BEGSIZE 23 /* byte location of file size */
/* found in the directory buffer*/

E-2

......

#define BEGTRACK 21 /* byte location of the first */

s /* track in the directory buffer*/

= #define BEGSECTOR 22 /* byte location of first sector*/

; /* in the directory buffer */
n #define COFFSET 40 /* ASCII offset */
> #define MAXJIOBS 4 /* Maximum no, of jobs allowed */
- /* on the system */
#define NAMESIZE 12 /* The size of a filename */
#define DISKSTAT 0 /* The disk status bit */

#define DISKRDA 0 /* The disk ready bit */

o #define DISKPORT 0 /* The disk dataport */
4 #define COMMSIZE 5 /* The max size of a command */

N #define PARASIZE 12 /* The max size of a parameter */
#define BASE_ADDRESS 200 /* Start address of user memory */
#define 'TOP_ADIRESS OXFFFF /* End address of main memory */

#define BYTE_SIZE 128 /* Number of bytes in a block */

/* from the disk */

/* the following structure defines the process control */
/* blocks temppch and pcb[] are pch that will be used by */
/* the scheduler */

\

} struct z8pch {

\ struct z8pch *next_cb,

> /* next pcb in the queue */
& *previous_cb;

N /* previous pcb in the queue */

int priority,
/* used to determine queue to put into */
/* 0: system queue */
/* 1: readyl queue */
/* etc. */

- current_gq,

- /* indicates what queue it resides in */
/* 0: system queue */
/* 1: readyl queue */

- / * etc. */
) /* =1: i/o wait queue */
: process_data,

; /* to be used in later implementation */
/* for the address of data workspace */

N /* for the process */
E? offset_address,

N /* where the beginning address of */
» /* allocated memory is located */

i final_address,

ir a2 atadate"m e A"

/* where the final address of the */

ORI /* allocated memory is located */
‘ command_type,
NN /* this is set to tell the system what */
s /* kind of command is being executed */
N /* =l: SYS command */
" /* 0: RUN command */
= /* 1: LIST command */
/* 2: PRINT command */

‘: /* 3: DEL command */
40N /* ¢ DIR command */
N /* 5: EDIT command */
N /* note: EDIT isn't available */
i /* and others may be added as */
A /* they are needed */
.';I‘ port_of origin,
/* port number that the pcb's process */
T /* originated from */
. io_status;
o /* indicates if process is in an io wait %/
,‘ /* or not, and determines if the process */
o /* should be taken out of the io wait q */

« - /* 0: not waiting for io */

Y, } /* 1: waiting for io */

o peb [noports] ;
?_{I: /* the following is the headers for the I/O Wait queue */
v /* and the Ready queue., This is where other queues */

\ /* would be defined when they are added later. */

=
» struct gheader {

5 struct z8pcb *start,
oy /* pointer to first pcb in list */
- *ending;

) /* pointer to last pcb in list */
F A
T }int goount ;
._ iowaitg, /* header for I/0 Wait queue */
Lo systemg, /* header for system ready queue */
" readylq; /* header for readyl queue */
E.‘_ /* the following structure defines the ports' data table */
N struct portdata {
¥ - int statport,
AV /* this is the status port address */
.\j .~ .

“~

l.l
{ 7 E—4

7
™\
SN
P \:‘!
[A
DY v dataport,
% {-‘;«; /* this is the data port address */
{) sendbit,
K /* this is the send bit mask */
recvbit;
> } /* this is the receive bit mask */
ports [noports+l] ; /* ports' data table */
/* the noports+l ports will be for */
2R /* the printer port information */
‘32 /* the following structure defines the device table */
N struct dev_table {
char device_typre(10];
P, /* used in the SYS DEV ¥/
(o { /* to indicate what the */
™ /* device is */
o int controlport,
e /* the address of the control port */
< port_data;
“~ /* the address of the data port */
N }
{ device_table[deviceports];
A m /* the following structure defines the terminal-user table */
"c struct userblock {
Gt int loggedon, /* the logged on flag: */
jobrunning; /* is a job running: */
. /* 0-no,l-yes */
o }char usernm{8]; /* the logged on user */
~ userblocks [noports] ;
-'\a
o /* the userblocks' subscript (noports) will be used to */
. /* indicate which terminal is being used by the usernm[] */
o /* the following structure defines the usertable %/
N /* usertable[] is the table */
B struct usrtable {
N char username(8],
} password(8];
usertable[40];
: /* the following structure defines the delete table */
‘ -~ /* this table is used to delete files that users */
::,\) /* want deleted that are on the same sector/track */
Y
*
- E-5
Ry S i i s T e N e e R

.....

qqqqqq

._\ Hite b

/* this will save time writing to the disk and will */
/* also prevent overwrite */

NN
7
’

h struct del_table {
int track, sector, /* track and sector */
R portno [MAXJOBS] , /* port numbers of*/
S /* jobs using delete for */
" /* this sector and track */
del_count,
/* number of deletes to perform */
Y /* for this track and sector */
> row [MAXJOBS] ;
7 /* array of the rows to be */
o /* deleted on the given track */
/* and sector */

X }
delete_table [MAXJOBS] ;

/* the following are various integer and character */
/* declarations used throughout the system */

p int poll_portno,

(-5 /* current port which polling routine starts */
al portno,

/* current port number that is being accessed */
N (s no_users_on_sys,

YOS /* number of users currently on the system */
Y no_of_users,

o /* number of users that can access the system */

cmd, /* code for user command type */
. /* 1l: RUN */
/* 2: LIST *
i‘.‘: / * 3: PRINT */
o /* 4: DEL (Delete) */
» /* 5: DIR (Directory) */

memory_loc, /* The memory location for a file*/
fd, /* file descriptor used on opened files */
T~ finished, /* boolean indicating entire file */
- /* has been read */
. size, /* number of blocks used by a file */
dtrack, /* directory track to read */
L dsector, /* directory sector to read */
S del_track, /* dir track of file for deletion */
! del_sector, /* dir sector of file for delet. */
N number_jobs,/* number of jobs in main memory */
> begin_address[MAXJOBS+l], /* beginning addr. */
il /* of each jobs main memory allocation */
" . end_address[MAXJOBS], /* end addr. of each */
=~ /* jobs main memory allocation */

R E-6

I Lt - S amra i A o e Ay See A Ty
T A SR A SR S o _...4.‘?

order [MAXJOBS+1); /* indices of the sorted */
/* beginning addr. location*/

char command_line(32], /* command line entered by */
/* the user */

file usernamel8] ,/*username of requested file*/

opened_files[4] [32], /* info of opened files*/

name[12] , /* filename fram the directory */

file[12], /* filename sent from the user */

- message [MESSIZE] ; /* message tobe transmitted*/
i' /* the following is the structure definition for the */
/* command table which will be used through the validation*/
. /* of the conmand and setting up of the pcbs */
\‘E struct comm_ table {
| 2 char command (8],
o parameterl[12],

parameter2[12] ;

< int numparam;
o /* 0 = only a command */
59 /* 1 = one param plus command */

/* 2 = two param plus command */
{ /* int terminal; this may be used, but portno */ |
(T /*" showld be used with no Sorseeable problen x/

~' command_table;

.:,__\ Tt it Tl S et g Sah it i i N SRt oA e
AR
N
'5;, . /**t***/
RS /* */
._) /* MAIN */
e * */
o /* Date: 31 August 1983 */
) /* Version: 1.0 */
.\:: /* */
L /* Name: main */
; /* Module Number: 1.2 */
0 /* Function: This is the module that initializes the data */
3¢S /* base, monitors the consoles and validates the */
“t:;-; /* commands , */
bl /* */
0 /* Calling Modules: None */
/* Modules Called: initialize data base, p _comm_line, */
/* and det_valid _comm */
e /* */
o * Global Variables Used: None */
v /* Global Variables Changed: None */
= /* Y
~ /* Author: Paul E, Cruser and Ronald K. Miller */
o /* System: VAX 11/780, VMS 0/S and UNIX: for testing, only */
Y * *
:2:3 ;** /
o
SRS mAin()
{ @ begin
O initialize data base();
0 for (;:
%.'::. begin
ot p_comm_line () ;
N det_valid _comm() ;
' end
o end
7
.r'_‘_:-
B
o -
«~:) :::_‘".-
E-8

s a8, ‘ "n ' ..v.‘ o l'
LA ORI
(O SERL A] LI P
[SR B A N | PRRECI T S S

4
"

B~ :'¢
PR

- '., P
o '5_,“,'-,"{‘. A
AP X AR

g
'

[

POl
R

&

155

>
F
&
R A o

h IJ‘:
)

AR R
g

a3

_%5

”

o

/***f/

/* */
/* INITIALIZE DATA BASE */
/* */
/* Date: 1 September 1983 */
/* Version: 1.0 */
/* *
/* Name: initialize data base */
/* Module Number: 1.2.1 */
/* Function: To enter those initial parameters, that are */
/* necessary for the operation of the o/s, into */
/* the data base, */
/* */
/* Calling Modules: main */
/* Modules Called: none */
/* */
/* Global Variables Used: temppcb, pcb([], ports(], */
/% userblocks[], usertable(], */
/* no_users_on_sys, and no_of_users */
5 * Global Variables Changed: all of the ones used */
* *
/* Author: Paul E. Cruser */
/* System: VAX 11/780, V™S O/S and UNIX O/S: testing only */
* *
;***f/
initialize data base()
begin
int count;
/* the following are initialization of the status & data ports' */
/* addresses and the masks for the send and receive bits */
/* ports 0-3 are console ports; port 4 is a printer port */

ports[0] .statport = 0;
ports[0] .dataport = 0;
ports (0] ,sendbit = 0;
ports[0] .recvbit = 0;
ports[l] .statport = 0;
ports[l] .dataport = 0;
ports[l] .sendbit = 0;
ports[l] .recvbit = 0;
ports[2] .statport = 0;
ports[2] .dataport = 0;
ports([2] ,sendbit = 0;
ports[2] ,recvbit = 0;
ports{3] .statport = 0;
ports[3] .dataport = 0;
ports[3] .sendbit = 0;
ports(3] .recvbit = 0;
ports(4] .statport = 0;
ports[4] .dataport = 0;
ports(4] .sendbit = 0;
ports(4] .recvbit = 0;

E-9

......... .. SN S -
R T S T R
L DN A R N TR AT L S B

. M -- LY \ . Ce ‘e . - . - - . . - ~ . .
PRI SNSRI AP SRR I ORI I R

e . . " Ninge ML A 0, B A A NN AR S AN
<
N /* when more ports are made available, then they are to */
x‘; /* be added on to this initialization list */
,- /* the following is the initialization of the status bits of */
) /* the userblocks (the structures that tell the system who is */
e /* logged onto which terminal) */
‘::. /* the loggedon and jobrunning will both be initialized to 0 */
count = 0;
. while (count < noports)
o, begin
o userblocks [count] .1oggedon = 0;
o userblocks [count] . jobrunning = 0;
- count = count + 1;
end
9 /* the following is the initialization of the usernames */
5 /* and the passwords */
» strcpy (usertable[0] .username, superuser) ;
. strcpy(usertable{0] .password, sprpass) ;
strcpy(usertable[l] .username,userl) ;
- strcpy(usertable([l) .password,passl) ;
- strcpy(usertable (2] ,username,user?) ;
strcpy(usertable[2] .password,pass2) ;

/* etc, */

5 /* the following is the initjalization of the queue counter for */
/* the I/0 wait, System, and Readyl queues */

iowaitq.qoount = 03
- systemg.qoount = 0;
readylg.qoount = 03

/* the following initializations are for: */
/* number of users, which is currently 3 */
/* number of users on the system, which is 0 */
> /* number of jobs on the system, which is 0 */
. /* portno, set to the first port - 0 */
: /* the portno will be changed in the polling routine */
/* the number of users on the system will change as the users */
- /* log on and off of the system */
no_of_users = 3;
no_users_on_gys = 0;
number_jobs = 0;
portno = 0;

poll_portno = 0;

/* the following is the initialization of the begin address */
/* and end address of the available memory space. These are */
i /* used to allocate and deallocate memory (Memory Mgt.) */

”
Pod
o

E-10

RIS SR

NN TN \:.- NI \'.\'_."A AT e

.« v L L - . e T, . .
o et . . . et . - - . s Lo
AL AL AL GRS SN R P P AT P W T VA WA W TP R R At ar e vt

~r e
4
i

FIARMR] ~ DA .
A .‘) .'1 W ~ “-'_ AR A N v,

N Y

O

a.

begin_address {MAXJOBS] = TOP_ADDRESS;
end_address [MAXJOBS] = TOP_ADDRESS;

return(l) ;
end /* the end of the initialization subroutine

E-11

N ANt e P T
.'..f'- ,h..._.‘.._. - .‘1,"_ L RJEN .-. R
PNTS YN TN TV ST W SP IEIN NI AT N PPN

*/

R - & | ." A ." .

(BNl - RJEYF)
e’ .

[L." .u::q.'-u.'

»
1‘1“""

SN

/% */
/* LOGIN-USER */
* *
/* Date: 13 September 1983 */
/* Version: 1.1 */
/* */
/* Name: login-user */
/* Module Number: 1.2.3.1 */
/* Function: This module will determine if the user is */
/* - to log onto the system and then enters the */
;: his username into the userblock table. */

*
/* Calling Modules: det_valid_comm */
/* Modules Called: build message, get_command_line, error, */
;* checkuser, and strcpy *;

* ®
/* Global Variables Used: userblocks[].userrm, portno, */
/% userblocks [] .loggedon, */
/* no_users_on_sys, */
/* and command_line */
/* Glaobal Variables Changed: userblocks(].userrm and */
/* no_users_on_sys */
/* */
/* Author: Paul E, Cruser */

/* System: VAX 11/780, WS /S and UNIX O/S: testing, only *;
*

/**/

login_user()
begin

#define ummessage 6
#define pwmessage 7
#define illegal user 4
f#define login_complete 9
int i,3;
char un(8],

pwi8];

igeéuizerblocks [portno] .loggedon == ()
build_message (unmessage); /* username prompt */
get._gamnd_line(): /* get the username from the user */
= 0;
while (1 < 8) /* take the username from the comm line */
if (command_line({i] != '\n')
eluﬂ[i] = command_line(i];
se
begin /* £111 the rest of un[] with blanks */
for (j=i;7;3++)
wmfi] ="' ';
i=8;

E~12

i B RSl '.'-r;‘-..‘...'h..":l"‘v'.T UMM A AP

i3
Y
W build_message (pwmessage); /* password prompt */
‘A get;_cmmand_line() : /* get the password from the user */
e = 0;
v while (i < 8) /* take the password from the comm line */
N if (command line[i] != "\n')
y eimlil = command_line[i];
se
begin /* £il11 the rest of pw[] with blanks */
2 for (j=i;7;j++)
N wnfi] = ' *;
xXi is= 83
. if (checkuser(un,pw))
S /* check to see if user can get on system */
£ begin
-3 /* copy the necessary data into the next available */
o /* user block */
strcpy(userblocks [no_users_on_sys] .userm,un) ;
userblocks [no_users_on_sys] .loggedon = 1;
! no_users_on_sys += 1;
) build _message(login_complete) ;
return(l); /* one returned if login successful */
. end
© o
R begin
' /* send illegal user message to the console trying */
) /* to log in */
! error (illegal user);
b, return(0); /* zero returned if login unsuccessful */
d /* ie. wrong password or invalid user name */
s else
. return(2) ; /* two returned if login not necessary */
L /* ie. the user is already logged on */
‘ end
s
'Y
S
2.
YRR
4
<
: E-13
L]
;:
g e e N e e e T i

/**/

/* */
* LOGOUT-USER */
/* *
/* Date: 1 September 198 */
/: Version: 1.0 */
*
/* Name: logout_user */
/* Module Number: 1,2,.3.2 */
/* Function: To clear the userblock of the username and */
/* to set the loggedon and jobrunning flags to */
/* 'no', The jobrunning will be set as a pre- 74
/* caution. */
/* */
/* Calling Modules: det_valid_comm */
/* Modules Called: build message, strcpy *;
* *®
/* Global Variables Used: userblocks, portno, and */
/* no_users_on_sys */
/* Global Variables Changed: userblocks and */
/* no_users_on_sys */
/* */
/* Author: Paul E, Cruser */

/* System: VAX 11/780, WS O/S and UNIX O/S: testing only :/

/**/

logout,_user()
in

beg

#define logoutmessage 8

int 1;
for (i=0;7;i++)

userblocks [portno] .userrm{i] = ' ';

userblocks [portno] .loggedon = 0;
userblocks [portno] .jobrunning = 0;
no_users_on_sys = no_users_on_sys - 1;
build _message (logoutmessage) ;
return(l) ;

end

E-14

it A «* L e ‘I.. -4.,-. -.' l‘-
PR AP LS
P2 BRI, W

o

—
LA A
R s %

oty & IR

a
AT

L)

q
e

v,

I 4
d&ﬁ.

[y EEN XA, ~ B
- 'l s [.‘l..* i

-
LR

34440

/***i****************/

*/
*

* PARSE COMMAND LINE

/* Date: 13 September 198
/* Version: 1.1

/* Name: p_comm line

/* Module Number: 1.2.2
/* Function: To retrieve the data line that is entered by
/* at a terminal., The lower case letters will
/* then be changed to upper case, only for the
;* command and not the parameters

*

/* Calling Modules: main

/* Modules Called: get_command_line, build parse_table,
/* process_scheduler, poll
/*

/* Global Variables Used: none
/* Global Variables Used: none

/* Author: Paul E. Cruser
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only

/*******t**t******t/

p._comm_line ()
begin
#define process abort 9

#define processing done 10
if (poll())
begin

get_command_line(); /* get comm line from the user */
build_parse table(); /* have the comm line parsed and */
/* saved */
end

else
if (lprocess_scheduler())
error (processg_abort) ;
else
build message (processing done) ;
end

E-15

Vs

v
A
'.':: /**/
A /* */
D /* POLL */
I /* */
j.' /* Date: 11 Octcber 198 */
2l /* Version: 1.1 */
:J‘. /* *
/* Name: poll */
‘ /* Module Number: 1.2.2.1 */
/* Function: To poll the ports that the users consoles */
o /* will be commmicating through, It will */
12 /% return a 1 if a port is sending samething */
-3 /* or a 0 if it has checked each port once and */
¢ 5* has not gotten a response fram any of them */
] *
/* Calling Modules: p_comm line */
& /* Modules Called: none */
.2 * */
, /* Global Variables Used: portno, ports] */
> ;* Global Variables Changed: portno *;
- * *
o /* Author: Paul E. Cruser */
;g: /* System: VAX 11/78, WS /S and UNIX 0/S: testing only */
*
'?: /**ﬁ*ﬂ***t**ﬂﬂ*******ﬂi*************t*********************** /
!-.\
' ﬁ poll()
:.\ ugin
) int o, /* temporary port number variable */
. yes, /* flag to tell if a port needs to be tended to */
N counter, /* count how many ports have been checked */
tempstat, /* temp. storage for the status ports' contents */
rstat; /* status byte masked */
» yes = 0;
e counter = 0;
e o = poll_portno;
Ky while (lyes)
o vhile ((counter < noports) && (lyes))
begin
- if (userblocks[pno] .jobrunning i= 1)
" begin
- rstat = (inp(ports(mo] .statport) & ports[mo].recvbit);
x if (rstat = 0)
o begin
\ yes = 1;
- portno = pno;
return(l) ;
:;5 end
- else if(pno == noports-1)
) mo = 0;
9 __ else
N mo = mo +1;
.”.‘ ,
»
7 E-16
R
OO e

BT I IR SN) . .
N2 WG SR A, aal PV ST N W DA P, W)

end
counter += 1;
end
return(0) ;
end

E~17

. , ..
N ‘
AL AR

R

NN

b Y NS

Loy .

P S R 8. B
“l’.'l‘l' - S] :.l

‘l
Ol
-

Kol
s '

AN
s - 4 4

)
.'ll

. :’ v
“

> .’ i . Dt s R
o "' .‘ P‘."‘. ’.“‘a “.'Il "- ‘ r."'.."

|
N
o

/**/

/*
/*
/*

*

/*

SYSTEM_CHANGE

Date: 3 September 198
Version: 1.0

Name: system_change

Module Number: 1l.2.3.4

Function: This will verify that the user is authorized
to make the system changes that are requested
and then makes those changes using a menu
system, if a menu is needed.

Calling Modules: det_valid comm
Modules Called: build pcb, error, adduser, and deluser

Global Variables Used: superuser, userblocks(] .username,
portno
Global Variables Changed: none

Author: Paul E, Cruser
System: VAX 11/780, WS O/S and UNIX O/S: testing only

*/
*/

*
*/
*/
*

/ RARRRRRARERRRRRARRENTARIRRAREREAARRARAREERARAEAARERR SRR R SRR AR A AN /

system_change ()
begin

f#define not_superuser 5
char *systemcomm;

if (stringcmp(superuser,userblocks [portno] .userm))

begin

build pcb(-1) ;

systemcomm = “ADDUSER";

if (stringcmp(systemcomm,command_table.parameterl))
adduser() ;

else

begin
systemcomm = "DELUSER";
if (stringcmp(systemcomm,command_table.parameterl))

deluser() ;
else
begin
/* to be updated when other commands */
/* are necessary for the system */

end /* last else */
end /* previous else */
end /* first if */
else
error (not_superuser) ;

E~18

...........

/**/

YRR /* */
. = * HELP-USER */
- /* */
2 /* Date: 3 September 1983 */
: Version: 1.0 *;
e *
o /* Name: help user */
) /* Module Number: 1.2.3.3 */
/* Function: This checks to see if the help can be pro- */
/* vided and gives out the information or a */
b /* message is sent to the user that no info is */
B /* available, */
_:.:; /* * /
/* Calling Modules: det_valid_comm */
/* Modules Called: build message, stringcmp, users_on_line */
“;3 /* and devices_available */
3 \: / * * /
o /* Glcbal Variables Used: portno, usertable */
o /* Global Variables Changed: none x/
- * *
= /* Author: Paul E, Cruser */
: /: System: VAX 11/780, WS O/S and UNIX O/S: testing only :/
: 5(: ;**"****“** /
(3 help user()
Y e begin
’ #define no_help 0
j,-i #define run_format 1
9 #define list_format 2
#define print_format 3
#define delete_format 4

#define directory_format 5

~ int help_set;

N char *users,*devices,*run,*list,*print,*delete,*directory;

o users = "USERS"; /* request to list the users on the system */

devices = "DEV"; /* request to list the devices on~line */
run = “RON"; /* req. to show the format for run comm. */

list = "LIST"; /* req. to show the format for list comm. */
print = "PRINT"; /* req. to show the format for print comm. */
delete = "DEL"; /* req. to show the format for delete comm. */

::1 directory = "DIR"; /* req. to show the format for dir. comm. */
e help set = 0;

\ if (stringcmp(users,command table.parameterl))

o a help set = 1; /* system inquiry */

se

_I;I- if (stringcmp(devices,command_table.parameterl))

.::-_2 o belp set = 2; /* system inquiry */

AN se

if (stringcmp(run,command_table.parameterl))
help set = 3; /* command inquiry */

- E-19

. 0
w' PR
[T B

[}

a‘.& u,

v R ISV

[4
A

34 ;","
]
1.

PRV S

LY.
' .i’.n‘c
p'_."; .

[} I])
v‘..,‘)'_;.-.
Satet
AT S S

PERTEAT AN
LI A

.......

........................

. else
SR if (stringemp(list,command_table.parameterl))
' help set = 4; /* command inquiry */
else
if (stringcmp(print,command_table,.parameterl))
help set = 5; /* conmand inquiry */
else
if (stringcmp(delete,command_table.parameterl))
help set = 6; /* coomand inquiry */
else
if (stringcmp(directory,command_table.parameterl))
help set = 7; /* command inquiry */
switch(help_set)
begin

: build message (no_help);

case 1: users_on_line();

case 2: devices_available();

case 3: build message(run_format);
case 4: build message(list_format);
case 5: build message(print_format);
case 6: build message(delete_format);

build message(directory format);

default: build message(no_help):
end

E-20

............

vvvvv

" .

..........

..........

/**/

o ~',If:‘;: /% *x/
| - /* ADDUSER %/
L /* *
e /* Date: 7 September 1983 */
Y4 /* Version: 1.0 */
_st.- /* *
" /* Name: adduser */
; /* Module Number: 1.2.3.4.2A */
;* Function: Adds a new user's username and password */
* */
L /* Calling Modules: system_change */
d /* Modules Called: none */
" /* */
/* Global Variables Used: no_of_users, usertable */
acoN /* Global Variables Changed: no_of_users, usertable */
/* */
N /* Author: Paul E. Cruser */
/* System: VAX 11/780, WS O/S and UNIX O/S: testing only */
e * *
/***ﬂ****t**;
o adduser ()
0 begin
o #define blank ' '
int cat;
P y no_of_users += 1;
- E cnt = 0; ’
S while (ent <= 7)
‘-;.,' ugin
at += 1;
/* read in the username into */
i /* usertable [no_of_users-l] .username */
e end
o ot = 0;
= while (ent <= 7)
o begin
L usertable[no_of_users-l] .password[cnt] = blank;
. ont 4= 1;
o end
s end
-
2%
v
E~21

......
...........

ol g, N

7 /**/
e /% */
T I DELUSER */

: /* *x/
- /* Date: 7 September 1983 */
-, /* Version: 1.0 */
(- * *
% /* Name: deluser */
’ /* Module Number: 1.2.3.4.2B */
P /* Function: Delete a user's username and password fram */
R /* the usertable */
N * *
;‘ /* Calling Modules: system_change */
o /* Modules Called: none */
v /* *
o /* Global Variables Used: no_of_ users, usertable */
N /* Global Variables Changed: no_of users, usertable */
= * */
o /* Author: Paul E, Cruser */
oo /* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
= * *
- ;** /’
£ deluser ()

! begin

int cont,i,j:

A Gs char deletename(8];

A /* read deletename from superuser */

e for (cont = 1;no_of users-1;cont++)

v if (stringcmp(usertable[cont] .username,deletename))
" i = cont;

- for (cont = i;no_of_ users-2;cont++)
" /* shift the table down over the user's id */

N begin
- for (j = 0;7;j++)
- begin
“- usertable [cont] .username[j] =
- usertable [cont+l] .username (3] ;
usertable [cont] .password[j] =
= usertable [cont+1] .password(j];
e end
..':_". end
- no_of_users -= 1;
e end
{
I: -l

y E~22

4 T

»‘ .'*

p

‘-- . /**/

MO :j:::j /* */

(~ /* USERS_(N_LINE */

_‘ /* *

- /* Date: 9 September 1983 */

0 /* Version: 1,0 */

R /* */

::_?. /* Name: users_on_line */
: /* Module Number: 102.30301A */

/* Function: Lists the users that are logged into the */

- /* gystem and the terminals they are using */

P /* ‘ */

i /* Calling Modules: help user */

e /* Modules Called: tranamit_message */

n * *

.. /* Global Variables Used: noports, userblocks, MESSIZE */

o /* Global Variables Changed: none */

L %* *

e /* author: Paul E, Cruser */

<, /* System: VAX 11/780, WS O/S and UNIX O/S: testing only */

Tyl * *

\ .’. / RRRREARRRAREREAARARRRERARAREARAAARRANEERAR RS R AT I AR T AT AN IR ddhd /

- "\

Z;iq?_ users_on_line()

oD begin

o) int duke,i;

' char terminal [MESSIZE - 10];

N strcpy(terminal , " TERMINAL ");

v for (duke = O;noports -~ 1;duke++)

X if (userblocks[duke] .loggedon)

. begin
5 for (i = 0;7;1i++)
J message[i] = userblocks[duke] .userrm[i];
. for (i = O;MESSIZE - 10;i++)
message[i+7] = terminal([i];

N switch(duke)

1O begin

. case 0: { message[MESSIZE-2] = "0"; break; }
9 case 1: { message[MESSIZE-2] = "1"; break; }
o case 2: { message[MESSIZE-2] = "2"; break; }
-t case 3: { message[MESSIZE-2] = "3"; break; }
o message [MESSIZE-1] = "\n";

transmit_message (message) 3

[end

2 end

I;f-\; E-23

l_,\

/% DEVICES_AVAILABLE */

/* */
/* Date: 9 September 1983 */
/* Version: 1.0 */
/* *
/* Name: devices_available *
/* Module Number: 1.2.3.3.1B *
;* Function: To list the devices that are online *
* *
/* Calling Modules: help user *
;* Modules Called: transmit _message */
* */
/* G'obal Variables Used: device_table, MESSIZE */
5* Global Variables Changed: none */
* */
/* Author: Paul E, Cruser */
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
* *

/**/

devices_available()

begin

/* will be written later */

/* it will be the same as */

/* users_on_line in structure */

end

E-24

AL TS A AR A e g s S oL S UM S gt ARSI AL DI BTSN N A A YA

e

.,::

A0

:3‘_ /*********'k**/

2O /* */

s - /* BUILD_MESSAGE */

{ /% *

o /* Date: 9 September 1983 */

T /* Version: 1.0 */

.j-:. /* *

L /* Name: build message */

o /* Module Number: 1l.2.3.1.2 */
/* Function: To build a message to be sent to the user */
/* by using a integer code sent in to indicate */
5* what message is needed. */

32 * *

-~ /* Calling Modules: 1login_user, logout_user, help user */
;: Modules Called: transmit_message :;

e /* Global Variables Used: message, MESSIZE */

;g 5: Global Variables Changed: message :/

:;j- /* Author: Paul E, Cruser */

= /* System: VAX 11/780, WS O/S and UNIX O/S: testing only :/

i .

:: ;** /

- build_message (coded)

int coded;

I OR

e char code0[MESSIZE] ,codel [MESSIZE] ,code2[MESSIZE] ,code3 [MESSIZE],

o code4 [MESSIZE] ,code5 [MESSIZE] ,code6 [MESSIZE] ,code7 [MESSIZE] ,

<, code8[MESSIZE] ,code9[MESSIZE] ,codel0[MESSIZE] ;

N strcpy(code0,™o help is available for that command \n"):

- strcpy(codel ,"Format: RUN FILENAME (executable file) \n");

' strcpy(code2,"Format: LIST FILENAME \n");
strcpy(code3,"Format: PRINT FILENAME (nonexecutable) \n");
8 strcpy(coded,"Format: DEL FILENAME \n");
o strcpy(code5, "Format: DIR \n");
o8 strcpy(code6 , "USERNAME : \n");
strepy(code7 , "PASSWORD: \n");

v strcpy(code8,"Logged out... \n");
strcepy(code9, "Log-in complete... \n"):
strcpy{codel0,"Processing of job complete... \n"):
switch(coded)
L begin
o case 0: { strcpy(message,code0); break; }
(case 1: { strcpy(message,codel); break; }
m case 2: { strcpy(message,code2); break; }
- case 3: { strcpy(message,code3); break; }
- case 4: { strcpy(message,coded); break; }
I case 5: { strcpy(message,code5); break; }
- case 6: { strcpy(message,code6); break; }
. i case 7: { strcpy(message,code7); break; }
S e case 8: { strcpy(message,code8); break; }
R e
B~ E~-25
na

e R g

A T T S T T T S N A T s XS P a5 IR

v case 9: { strcpy(message,code9); break; }
" case 10: { strcpy(message,codel(); break; }
- default: { error(6); return(0); }

end

transmit,_message (message) ;

return(l) ;

A
,
|
|
PR R R L it atadade taataats o s Yol I- L"\- Tt \-L_\A\.‘!.\-»‘\!.\A\.hh;")ﬁ';

v

="
P}g

o s

s
’\ L]

e

/**/

/* */
/* BUILD_PCB */
/* */
/* Date: 13 September 1983 */
/* Version: 1.0 */
/* */
/* Name: build pcb */
/* Module Number: 1.2.3.5.2.1.2 */
/* Function: To initialize a pcb for a job/process to */
/: be run or put on a queue */
*/
/* Calling Modules: get_file, system change */
/* Modules Called: insert _pcb */
/* */
/* Global Variables Used:pcb(], userblock[], and portno */
;* Global Variables Changed: pcb(] */
* */
/* Author: Paul E, Cruser L74
/* System: VAX 11/780, WS (/S and UNIX O/S: testing only */
* *
/**;
build _pcb (jobcode)
int jobcode;
/* note: if there is another ready queue added, then another */
/* parameter would be passed in to give the priority */
begin

pcb [portno] .port_of _origin = portno;
pcb[portno] .io_status = 1;
if (jobcode == -1)
begin /* if it is a SYS command */
pcb [portno] .priority = 0; /* this is where the second */
/* parameter would be used */
pcb[portno] .current_q = 0; /* but not here, since it */
/* will always be 0 for SYs */
pcb[portno] .io_status = 0; /* only for SYS: it will */
/* not have to wait for i/o */
/* until time to write to */
/* data base on disk- which */
/* is not being coded in */
/* this version of AMOS */

el‘p‘:.;b[portno] command_type = jobcode;

else /* else it is samething else */

begin

pcb[portno] .priority = 1; /* this is where the second */
/* parameter would be used, */

pcb (portno] .current_q = 1; /* as well as here */

pcb [portno] .command_type = jobcode;

*/

/* so that port will not */
/* be checked in the poll */

/* routine

cbrunning = 1; /* set jobrunning to 1, */
E-28

3

end

userblocks [portno]

insert_pcbh() s

AN + ST AT e T el T RIS O AR, LTI, PR A N : s %y Y s "y LA RAZL . L AL, TR wow T W,
ST RARAREOY SICNTMNY UGV A R R A e A R R B
-\.l.u. \. ,-u-H'J\.--f\- --.-.' b -nvs‘o{-ﬂoh .-\-ti,.--.- -\q-‘- \-n. ! v M\-.,i-. .i.\ t.- d.(l , { - 1-- \.,‘. -"\i.ﬂw y i <, A-h.-‘-.-l-\c-“-v \ " 01 n(* 3 --. 'tcc-- -. -\ -L. 3 ../ .‘... .A....i.. .-.... . » lﬂv’ o -.. - K

/**U***

get_command_line ()
begin
int q;

q=0;

g=q+1; /* read in the command 1
while ((inp(ports(portno].statport) &
end

/* table,
if (g = 31) command line([31] = "\n';
return(l) ;
end

E~-29

/**/

/% */
/* GET_QOMMAND_LINE */
/* */
/* Date: 13 September 1983 */
/* Version: 1.0 */
/* */
/* Name: get_command_line */
/* Module Number: 1.2.2.2 */
5* Function: To read in a line from the user's port *5
*
/* Calling Modules: p_command line, login_user */
;* Modules Called: getchar() ¢ inp() :;
*

/* Global Variables Used: command line, ports([], portno */
;* Global Variables Changed: command line *5
* *
/* Author: Paul E, Cruser */

/* System: VAX 11/780, WS O/S and UNIX O/S: testing only */

*******************f/

while ((q<31) &&((command line[q] = getchar()) != "\n'))
begin

ine */

ports{portno] .recvbit) == 0) ;

/* note: getchar will not be the library routine */
/* it will have to worry about what port to */
/* receive the response. The getchar routine */
/* will be replaced by inp(portaddress), */
/* where portaddress is taken from the ports */

*/

/* make sure there is a carriage return */

/**/

[- /* CHECKUSER */
- /* */
0 /* Date: 13 September 1983 */
W /* Version: 1.0 */
oy /* */
Y /* Name: checkuser */
/* Module Number: 1,2.3.1.1.3 */
ol /* Function: To see if the user is logged onto the system */
e 5: The value 1 is returned if not else 0 */
1‘\‘ *
/* Calling Modules: login_user */
/* Modules Called: stringcmp */
/* *
N /* Global Variables Used: usertable{], noports */
A5 /* Global Variables Changed: none */
e /* *
s /* Author: Paul E, Cruser */
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
oty * *
| - 3 / RRERRERRERRRRRRERRRRARRRERRRRERERERRRRRRERRAERARER R ARk A RhkhhhkRhidk /
SIS
3;::';; checkuser (tnm, pwd)
Tl char umm|8],pwd[8];
- begin
{ @ int no,counters;
0 no = 1; /* flag to indicate if username was found */
Y, counters = 0; /* step counter for the usertable */
Ny while ((no) && (counters < noports))
ahy! begin
<. J if (stringcmp(usertable[counters] .username,unm))
' no = o.
A if (no) ct':unters ‘= 1;
o if ((Ino) && (counters < noports))
e if (stringemp(usertable[counters] .password,pwd))
R return(l) ;
return(0) ;
o end
1
S
= B-30
N .‘-;'.4'_&44'_. AR .-_L e T -.;L.A.J;_.A.A.A.___ A._J

Li . /***f/
S * *x/
| /* INSERT_PCB */

* *
- /* Date: 15 September 198 */
e /* Version: 1.1 */

{ /* *
/* Name: insert_pcb */
/* Module Number: 1.2.3.5.2.1.2.1 */
- /* Function: To insert a process control block into a */
- /* queue, The queue is determined by the */
v /* priority that was set when the pcb was */
% /* initialized, */
T /* Y
' /* Calling Modules: build pcb */
e /* Modules Called: none */
N /* */
zf /* Global Variables Used: pcb[], systemg, readyq, iowaitq */
> /* Global Variables Changed: systemq, readyq, iowaitq */
< /* */
/* Author: Paul E, Cruser */
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */

* *

/**/

insert_pcb()

A @ e

if (lpcb[portno] .io_status)

- switch (pcb[portno].priority)
P case 0:
. /* insert into the systemq */
o begin
o if (systemg.qoount == 0)
- begin
- /* systemq.start = pcb[portno];
- systemq.ending = pcb(portno];
- pcb [portno] .next_cb = pcb[portno];
3¢ pcb [portno] .previous_cb = pcb{portno] ;*/
Y end /* if */
o else
£ begin
L /*pch [portno] .next_cb = systemq.start;
= pcb [portno] .previous cb = systemg.ending.next_cb;
< systemg.ending.next_cb = pcb[portno];
- systemg.ending = pcb[portno];
= systemg.start.previous cb = system.ending;*/
end /* else */
- - systemg.qoount += 1;

R break;

b :'.a E-31

ROt i o .-‘J"P'_'.."'P}_ . T T TRV ~

R PP M R S S I LT

end /* case 0 */
case 1:
/* insert into the readylqg */

begin
if (readylg.goount == Q)
in

/*readylq.start = pcb[portno];
readylg.ending = pcb(portno];
pcb [portno] .next_cb = pcb[portnol;
pcb [portno] .previous _cb = pcb(portno] ;*/
end /* if %/
else

in
/*pcb [portno] .next_cb = readylqg.start;
pcb {portno] .previous_cb = readyg.ending;
readylq.ending.next_cb = pcbportno];
readylq.ending = pcb[portno];
readylq.start.previous_cb = readylq.ending;*/
end /* else */
readylqg.gqoount += 1;
break;
end /*casel */

/* case 2: this will be for expansion, ie. */
* if another ready queue (ready2q) */

/* were needed and implemented */
end /* switch's begin */

else

begin

/* insert into the iowaitq */
if (iowaitg.gcount == 0)
in

/*ilowaitqg.start = pcb[portno];

iowaitg.ending = pcb{portno];

pcb [portno] .next_cb = pchportno];

pcb[portno] .previous cb = pcb[portno] ;*/
end /* if */

else
begin
/* pcb [portno] .next_cb = iowaitg.start;

pcb [portno] .previous_cb = iowaitg.ending;
iowaitg.ending.next_cb = pcbportno];
iowaitq.ending = pcb{portno];
iowaitqg.start.previous_cb = pcb[portno];*/

end /* else */

E~32

.......
.........................

» i SR S e S SN S A g i s - Al Al A AR
S PR

SN NS A S S S s SRSt MR LI A '.'_".'.‘Z'.T

* .. iowaitg.qcount += 1;
. et end /* else */

end /* insert */

B Wl =

PR

.

Ty

RIS~ st &
A Tde VA

‘.I ‘l }

B
s

Pt

W A
o oA
] v et
- -

A E-33

RN

o R L T]
-.-':‘a e
PR PR

............................
...

/**/

.(-:'::'; /* */
) /* PROCESS_SCHEDULER */
/* *
/* Date: 11 Octaber 1983 */
/* Version: 1.l */
2 */
/* Name: process_scheduler */
/* Module Number: 1.2.3.5.2.2 */
/* Function: To process the I/0 wait queue, get the */
/* get the next ready process by checking */
/* the system queue for a process, then if */
/* none check the ready queues. If one */
/* of the queues has a ready process then */
/* the process is taken off the queue and */
/* executed, */
/% */
/* Calling Modules: execute_command */
/* Modules Called: send file, write, process_iowaitq, */
/* check_readyqs, get_pcb, program_run, */
/: run_sys_comm, deallocate_space *;
*
/* Global Variables Used: portno */
/* Global Variables Changed: portno */
/* *
- /* Author: Paul E, Cruser */
€e /* System: VAX 11/780, WMS 0/S and UNIX O/S: testing only */
* *
5***f/
process_scheduler ()
begin
#define command _type_error 10 /* code for error received */

int next_process;
process_iowaitq() ;
next_process = check_ready:s() ;
switch (next_process)
begin
case -1:
return(l) ;

case 0:
begin
get_pcb (next_process) ;
run_sys_comm() ;
return(l) ;
end

case 1:
/* case 2: */
/* etc,.. */

E~34

.........

_#D-A138 878 DETAILED DESIGN AND IMPLEMENTATION OF A 3/’..
MULTIPROGRAMMING OPERATING SYSTEM.. (U» AIR FORCE INST
TECH HRIGHT-PATTERSON AFE OH SCHOOL OF ENGI,

OF .
UNCLASSIFIED R K MILLER DEC 83 AFI1T/GCS/EE/83D-14 F/G 972

A

e

|
Ik

¥
o
-:EEEEEEE
EEEE
AT
Lt

=
EEFE
VORI

o

>

ey

. v
O O
‘e A ¢ g

.
«

1%

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

s %

-

e o

NN
ok X-4

-

Y %
v a
[N

‘Mﬂ'ﬁ
kD

4, 8 08

'.’l.II'-.

s e
s 8 >

-‘;‘f‘ ¢4

I-. » {'

h(T Y e S

we o,

i, a0 2
Lt B & -
’

'\‘ \‘:‘. N

A N LU

MY ‘: N
" ",y
"t &.}L‘. () T

,-._4»-.-. . AT YT SRACYAIA R g A Y N e Ak &4 S S 20 VT R AR A AR LR) |

SRS get_pcb (next_process)
RO switch(pcb [portno] .command_type)
: begin
case 0: { program_run(); break; }
REN case 1l:
o case 4: { send_file(portno); break; }
el case 2: { send _file(noports); break; }
™0 case 3: { write(portno); break; }
default: { error (command type_error); return(0);}
s end /* switch */
§ 3 deal locate_space (portno) ;
3 return(l) ;
e end
J end

ot
-y
T
rd
[

P E-35

'."‘..-f.."l et e N ST e

- AT AT % T AT e g Tt LT L IR SRR S I e - N~
LY PRGN LA T RO LR RO S G & SRR O o

o
.*‘
v(:_ : -: / RRRARARARRERRARRRARARRRRRRRARAARRRRRARRRRRAREARAR A AN AR ARRAA R R A, /
e ‘ }' * *
‘.,d.‘ ; . " */
y /* */
b0 /% Date: 14 September 198 */
A f-;': ;* Version: 1.0 74
% * */
N /* Name: check_readyqgs */
/* Module Number: 1.2.3.5.2.2.2.1 */
2 /* Function: To check all the ready queues to see if */
380! * there are any processes on them., It checks */
I /* the queues in order of priority and when */
N /* the first nomempty queue is found its */
3% /* priority is sent back to the caller. If */
/* all of the queues are empty the value -1 is %/
Ya /* returned., */
/* ¥
Ao /* Calling Modules: process scheduler */
&2 * Hodules Called: none *;
e *
* Global Variables Used: pcb(], systemy, readylq */
e /* Global Variables Changed: none Z
N t
:.:g /* Author: Paul E. Cruser */
:{3 /: System: VAX 11/780, VM5 (/S and UNIX O/S: testing only :5
@ /mmc*m*mmmttmn*****nutm*m*nn*************/
BEN
/) check_readyqs ()
S ugin
Y return(0) ; /* systemg has at least one process */
, else
LN if (readylq.gcount > 0)
j‘,:: return(l) ; /* readylq has at least one process */
$:: /* else */
2 /* if (ready2q.qoount > 0) */
/* return(2); */
-"::i' / * etCese */
o else
":i return(=1); /* all the queues are empty */
2 end
J' «
o)
3
)
o E-36

o Ol e A A b iy bn - b B p X 4 po KRR RSN RS N A A P B e A

e
'

:t: SN / RERRERRRERARRRERRRRRRRRRRERARRRARRRAARRRARRARARRRRRRRAERRA AR NS /
;‘ :':‘:': * *

¢ Tat ; - */
. /* */
- /* Date: 15 September 1983 %/
.{ / * Vetsion: 101 *
% /* *
/* Name: get_pc *
o /* Module Number: 1.2.3.5.2.2,2 *
. /* Function: To get the next pchb and take it off the *
33 /* queue which it is on. The next pcb is the *
W * first one on the queue. *
; /* %/
b4 /* Calling Modules: process _scheduler *
h : Modules Called: none *
A *
/* Global Variables Used: systemq, readylq, portno */
Y ;: Glcbal Variables Changed: systemq, readylq, portno :;
/* Author: Paul E, Cruser */
/: System: VAX 11/780, WS O/S and UNIX O/S: testing only */

8 *
h ;mwntmﬁm*nnunmnﬂn*u*mm****nwn**/
é! getpeb (tyrone)

> Y t tyrone;

T begin
int i;
struct z8pch *temp;
: switch(tyrone)
begin
case 0:

portno = systemqg.start.port_of origin;
if (systemg.qoount == 1)
systeng.qoount -= 1;

‘ 4
23 else
o begin
temp = systemq.start;

& systemg.start = temp.next_cb;
W systemxy.start.previous_cb =
& temp.previous_cb.previous_cb;
X systemg.qoount ~= 1;

end
B break;
N end /* case 0 */
:.: case 1:

begin
portno = readylq.port_of _origin;
if (readylg.goount == 1)

59

‘oY

readylq.start = 0;

readylq.ending = 0;

readylq.qgoount -=1;
end

else

begin
temp = readylq,.start;
readyiq.st::it = te;p.mxt._cb;
readylq.previoug cb =
temp.previoug _cb.previous cb;
e“rieadqu.quomt -= 1z

break;
end /* case 1l */
end /* switch */

L R N T N . T v ¥, S SN AR ATE Y TN AR AR S TV LN TR TR O\ ERACIA A S AL A |

/ RARERARRARRARRARNARARRRRNRARRAARRRAARRARRRRAREAARRAAR R AR ARk Rhddd /

/* */

;: PROCESS_TOWAITQ :/

/* Date: 15 September 1983 *

/* Version: 1.0 *

/* */
bd Name: process iowaitq *
* lbdlle Number: 1020305.2.201 */
* Function: To transfer any process on the wait queue */ |
bd that is done with i/0 wait to a ready queue *;
] *® i
* Calling Modules: process_scheduler */

/* Modules Called: insert_pcb :5
®

/* Global Varjables Used: iowaitq, noports, portno */

/* Global Variables Changed: iowaitq :;

/*

/* Author: Paul E. Cruser */

/* System: VAX 11/780, WS (/S and UNIX O/S: testing only */

*

/wmn*um*n*m*ntutuu*m****n**mmn**n**t**;

process_iowaitqg()

begin

int 1i,tempportno;

struct 2z8pch

*temp;
if (iowaitg.qoount > 0)

begin
1:anp°- iowaitq.start;
= 0;
while (i < noports)

if (temp.io_status == ()

begin
tempportno = portno;
portno = temp.port_of_origin;
temp.next_cb.previoug ¢ = temp.previous_cb;
temp.previous_cb.next_cb = temp.next_cb;
iowaitq.goount -= 1;
insert_pcb() s
portno = tempportno;
return(l) ;

end /* if »/

i4=];

end /* while */
return(l) ;
end /* if &/
end /* process_iowaitg %/

E-39

D TRy T T . N RTATS T IR . N ’
L A : e Sty Y. _\':L_\LL':\.‘_'&".\: xi\'\. .._‘n_"q'._'f.'f, R

LL LA T a e PN o G 3 ATLTRTALT A TR TR VS A Rl Al g Gl Gt AT AL 24 S50 AN PN SR A A DRI D i |

by $,;. /***ﬁ**t*********/
- '.\'

S /* */
- L /* W *
x| * *
~ Date: 15 September 198 *
Y Version: 1.0 *
‘&q’ */
K */

Module Number: 00 */

*
/*

*
/4 ~ Neme: cleanup

* Function: This subroutine will delete any process */
*
*
*
*

o) from the queue it resides in and end it */
= without finishing, It is not used in this */
4 / implementation, but can be useful later. :/
‘..
/* Calling Modules: none */
R ;* Modules Called: deallocate_space :5
.
&; /* Global Variables Used: pcb[], portno, iowaitq, systemg */
K /* readylq */
b /* Global Variables Changed: iowaitq, systemqg, readylq, */
* peb(] */
N /* K i
) /* Author: Paul E. Cruser */ |

;: System: VAX 11/780, WS (/S and UNIX O/S: testing only :5
>: /*********************ﬁ**/

‘ clean_up()
‘ begin
" pcb [portno] .next_cb.previous cb = pcb[portno] .previous_cb;
2 pcb [portno] .previous_cb.next_cb = pcb[portno] .next_cb;
Y deallocate_space (portno) ;

switch (pcb[portno] .current_qg)
begin

:; case -1: { iowaitq.qoount -= 1; return(l); }

W case 0: { systemg.qoount -== 1; return(l); }

x; case 1l: { readylq.qoount -= 1; return(l); }

. /* case 2: { ready2q.qoount -= 1; return(l); } */
/* etc... */

b default: return(0);

| end /* switch */

) end /* clean_\wp */

::1'

) &
|y

RO
=

LY
L4
.

rJ
»

7 E-40

/*ﬁ*t*********t***t/

* */
* ROUN_SYS_COMM */
/% */
* Date: 15 September 1983 */
/* Version: 1.0 %/
/* */
/* Name: run_sys_comm : */
* m‘ Number: 1.203.402 ’ */
* Function: To rn the system command :;
]
* Calling Modulesa: process _scheduler */
/* Modules Called: none Z
]
* Global Variables Used: none */
: Global Variables Changed: none :;
* Author: Paul E, Cruser */
5‘ System: VAX 11/780, VMS O/S and UNIX O/S: testing only *;
*® *

/i**ti*t***************************t*****************************/

run_sye_comm()

/* ‘The system commands are run in the module system change */

/* and & not need to be run here. This module will be needed */

/* when the system change will be actually implemented on the */

/* host micro-system. */
return(l);

E-41

§ g™
\Yxx X,

M ..‘:J‘.‘!J
LAy

'
»tat

/******************t*************t*i****************************f/
/i
PROGRAM_FRUN

Date: 15 September 1983
Version: 1.0

Y
¢

P2 o P

Fol o

Name: program_run
Module Number: 1.2.3.5.2.2.3.4
Function: This routine will call a 2800 Assembly sub-

routine that will enable the interrupts and
start execution of the file pointed to by
pcb's offset address.

Calling Modules: procesg_scheduler
Modules Called: amoskernel

Global Variables Used: pcb(], portno
Global Variables Changed: none

Author: Paul E, Cruser
System: VAX 11/780, VMS /S and UNIX O/S: testing only

v

i "{fl{’.u.

Yo vty
"y

AN

iy i
-

Lo A

.

- Ay ApN 0, 8y 6

/i******i***ﬁ/

- el

o

program_run ()

if (amoekernel (pcb[portno] .offset_address,
pcb [portno] .£inal_address))
return(l);
else
return(0) ;
end

Cha SRl E R e R A e A AR A A A i A e i

/*****i**/

/* */
/* DET_VALID_COMM */
/* *
/* Date: 1 Sept 1983 *
/* Version: 1.2 */
/* *
/* Name: det_valid_comm *
/* Module Number: 1.2.3 */
/* Function: This module will detrmine the command the user */
/* is requesting then will call the necessary */
;* routines to have the specific command executed.z
* *
/* Calling Modules: main */
/* Modules Called: log in user, stringcmp, log out_user, */
/* help user, system change, user_command, */
7’ execute_user_command, error */
* *
/* Global Variables Used: command_table.command */
;* Global Variables Changed: None *5
* %
/* Author: Ronald K, Miller */

/* System: VAX 11/780, WS O/S and UNIX O/S: testing only :5

/t**t*************t*******ﬁ/

det_valid_comm()

char *bye,*help, *system; /* Initialize comparision string */
bye = "BYE";
help = “HELP";

- ls!sl,
if(log_in user() I= 2) return(l);
if (stringcmp (bye,command_table,command))
log_out_user() s
emxi'etmm(l);
if (stringcmp (help, command_table,command))

help user() ;
return(l) s

end
if (stringcmp (system,command_table,command))

E-LQ3

Py 49 31 A RIS A DR RN IR A D A LR 4 3 Vo ¥ e at oV Vavavet A IV A S R) At e d S

O

0%

e)

N if (user_command ())
e begin

- T execute_user_command () ;
" return(l);

28 end

N error(l);

T3 end

¥ ..4

Aty
AR

Ay

XXXXXXY

L]
a' s

Y

i #
P
LN

2y &
X

[& 4

“‘
LAA XA
P

0'.

oy <
L XA

E~44

RN
‘v'o

.
.8

ASAYE S YRARNAA TS & -t E N

*/
USER_CQOMMAND */
*/
Date: 1 Sept 198 */
/* Version: 1.0 */
/* *
/* Name: user_command *
/* Module Number: 1.2.3B */
/* Function: This module determines if the command */
/: requested is a user command. :;
/* Calling Modules: det_valid_comm */
;* Modules Called: stringcmp */
* */
/* Global Variables Used: command_table.command, cmd */
;* Global Variables Changed: cmd */
* *
/* Author: Ronald R, Miller */
/* System: VAX 11/780, VMS O/S and UNIX O/S : testing only */
* *
;nmmmu*ﬁ*m** /
user_command ()
. char *run,*list,*print,*delete,*directory;
@ /* Initialize comparision */

/* strings */
run = "RUN";list = "LIST"; print = "PRINT";
delete = "DEL";directory = "DIR";
if (stringcmp(run,command_table.command))

endand = 1; return(l); /* cmd=]l implies run command */
if (stingcmp(1ist ,command_table.command))

:& = 2; return(l); /* cnd=2 implies list command */
if (stringcmp (print,command_table.command))

“aﬁ = 3; return(l); /* cmd=3 implies print command */
if (stringcmp(delete, command_table.command))

beg::g = 43 return(l); /* cmd=4 implies delete command */

end

AL O 8 AN M M A A A R E A AL S

SN if (stringemp (directory, command_table,command))
AR begin
; and = 5; return(l); /* cmd=5 implies directory command */
end
return(0) ; /* return(0) implies not a user */
/* command */
end

T
a4 A . a8
" s
i ta l‘l.c.l

NN

AN R

" @

) E-46

ARG A L SRR DR S

YO AR g
. .

OO

< Telle N A G A I A R R O s B A I i i oo o L S S g '.f‘-"1

/*************i*it***tt****i************************************f/

/* */
* STRINGOMP */
/* . *
/* Date: 1 Sept 1983 */
/* Version: 1,0 */
/* *
/* Name: stringcmp */
/* Module Number: 1.2.3A */
/* Function: Detemmines lexicographic equality of two */
/* strings. */
/* */
/* Calling Modules: det_valid command, user_command */
;* Modules Called: None */
* []
/* Global Variables Used: None */
;* Global Variables Changed: None */
* */
/* Author: Ronald K. Miller */
/* System: VAX 11/780, WS O/S and UNIX O/S: testing only */
* *
;***t/
stringcmp(s,t)
char s[],t[];
- begin
.Y int 1,3;
- i=3=0;

while (s[i++] == £[j++])
/* Continue while strings are equal */
/* Return(l) if strings are equal */
if(s[i] == "\0') return(l):
return(0) ;

PRSEREAY, - ONAERDONOMNE § SN 0% %,

- JAFAVL
IR
P
TSN

TR L bt A M S A A I et JCR Ul A IR TN B AP R PO S A A A i a.'x'j
..........)

\‘; RATY / RERBRRARERRARRRERRRRRRRRARRAAREERRRRRRRAARRNRARERRRRARAR AR AR R AR /
AR /* +/
™ ' ;: EXEC™™"E_USER_COMMAND *;
. *®
13 /* Date: 1 Sept 1983 */
:'t::a /* Version: 1.0 */
._-.:‘: ® *
\ /* Name: execute_user_command *
/* Module Number: 1.2.3.5 */
/* Function: This module will have the user command checked *
e /* for validity and if valid will have it */
o /* executed., *
X . o/
/* Calling Modules: det_valid_comm *
, ;: Modules Called: validate user_command, execute_command :
-' ‘ /* Global Variables Used: None *
i ;: Global Variables Changed: None :
oo /* Author: Ronald K, Miller */
- ;: System: VAX 11/780, VX O/S and UNIX O/S: testing only */
K *
: :‘-: / RRRRRRERRRRRERRRRRRRAARRRRAXARRRRNRERRRRRARARRRAERARRRA A AR AR AR AAA R /
AN
> -.‘\ @en?nte_mLmﬂ()
| & if (validate_user_command())
'!,‘_-\ Min
\‘f: execute_command () ;return(1) ;
. end
b return(0) ;
ha end
AN
.Qj
.5.-'
e
>
f
R
N
N
N
3
.':::Z
3
N
oA
e
.;;5 E-48
.“:
%
x I e e T A

o
TRy W]

/ RERRRRERRRRRARAARARRARRRERRRERARRARRAERANRARARETAAAARARRhRR A RNt d /

MR
AACAAAALN

Bk /* */
- ;: VALIDATE_USER_COMMAND W/
/* Date: 1 Sept 1983 */
N /* Version: 1.2 */
- /* *
- /* Name: validate_user_command */ |
/* Module Number: 1.2.3.5.1 * ;
/* Function: This module will check to see if the proper * |
» /* file is being requested by the authorized user */
S /* and if the files are located on the disk, In *
/* the case of a RUN command this module will *
. /* also check to see if the requested file is an */
;: executable file. :/
.:f' /* Calling Modules: execute_user_command */
3 * Modules Called: chk_run_file, chk_filename, */
J /* chk_user_name %/
:, * */
* Global Variables Used: cmd */
. /* Global Variables Changed: None :;
. *
» * Author: Ronald K, Miller */
: : System: VAX 11/780, WS O/S and UNIX O/S: testing only :/
é / ARRRRERAARREERNRRRENRRREARRAERRARRRAERRRRARRRARREA AR R A AR A SRR AR /
: validate user_command () |
'T switch(cmd) |
begin
case 1:{if(chk_filename() && chk_user_name() && chk_run_file())
return(l) ;
% return(0) ;}
: /* return(l) if all three are valid */
: /* otherwise will return(0) */
case 2: case 4: {if (chk_filename() && chk_user_name())
return(l) ;
N return(0) ; }
) case 3: {if(chk _filename() && chk_user_name() &&
2 Ichk_run_file()) return(l);
S return(0) ;}
. case 5: return(l); /* directory command autamatically valid */
default: return(0);
5 end
, end
Ny
>,
e
MDA
9
. E-49

T L T T T N L e o T T L T T T VL e TR T e T Y S R T LT L YL S T L

LN RSV LoV Lo -

o
>
R
:':’:\ S /i**t******t*i***i*** /
NS /* */
. /* CHR_FILENAME */
/* +/
e /* Date: 1 Sept 198 */
X /* Version: 1,0 */
o * */
ot * Name: chk_filename */
/* Module Number: 1.2.3.5.1.1.1 *
o /* Function: This module will check to see if the file *
it; : being requested is located on the disk, *
b *
"f * Calling Modules: validate user_command */
L /* Modules Called: oren, error, close */
* */
2y /* Global Variables Used: command table.parameterl */
N 7 Global Variables Changed: None *;
~ * *
X /* Author: Ronald K, Miller */
NG /* System: VAX 11/780, YM5 (/S and UNIX O/S: testing only */
* *®
'3 . ;*tn*tumtﬁ*m*tnmmmnrumamutmmnm*m /
%3 chk_filename ()
@ if (£d=(open(command_table.parameterl,0)) == ERROR)
‘_1 error(2); /* if file can not be open the #*/
N return(0) ; /* file is not on the disk */
vy :;‘ end
t-: else
“.- min
. get,_username (fd) ;
At close (£d) ; /* else close the file and return(l) */
% return(l) ;
e end
X end
J}“
o«
\‘Q
¢
g)
5
Pty
5%
4 E-50

oAy _._‘_\}-.'_\"J_x el -."L-.;.-._‘__,j. NS \., * W T 78

, i I
1" £ ’nf\-

A

g’
%%
L

* g

ZRLKE

aLp

-

G

.
S
%
I..
‘
~.
-
s
i
po2
W
ETZ-:
E\ .
‘.
¢
% 4

SN

W

/ ARRARARRRARRANRRRRRRRRARRERRRRRRRNRRAREARARRRREERAAARRAN AR ARNE /

/.

*
*
*
*
*
*

*/

SR ;

Date: 5 Sept 1983 */

Version: 1.0 *5
*

Name: chk_run_file */

Module Number: 1.2.3.5.1.1.3 */

Function: This module is to determine if the file being */

requested is an executable file, will */

return(l) if so otherwise will return(0). :5

Calling Modules: validate user_command */

Modules Called: stringcmp :;

Global Variables Used: commend_table.parameterl */

Global Variables Changed: None :;

Author: Ronald K. Miller */

System: VAX 11/780, YWMS (/S and UNIX O/S: testing only :;

/ ARRERRRRRAARARARARARRARRARNRRRRARAARARARAAARAAR R AR SR IAAAA T AR R oA /

chk_run_file()
begin

char temp[3] ,*com;
int 1,3;
i=9=0;
com = “COM";
while(command table.parameterl{i++] I= ".");
/* Find the extension part of the */

while (3§ < 3) /* £ilename */
temp[j++]= command_table.parameterl[i++];
/* Place the extension in a */

if (stringcmp(com,temp)) /* temporary buffer for comparsion */
if(cmd == 3) error(ll); /* error(ll) means an executable ¥/

en;et:um(l) ! /* file is trying to be ran ®/

if(cmd == 1) error(10); /* error(10) means a nonexecutable */

endx:etmm(on /* file is trying to be printed ®/
E-S51

L) \:
N
‘.\:- - / RERRERRRRRRRRERERRRRARARRARARARARRRARRRAARRRRRARRARR AR RNRE A AR RN /
SOVRRON /* */
‘ s SR 7
N
N /* Date: 5 Sept 1983 */
o /* Version: 1.0 *5
J.\' * *
’ /* Name: chk_user_name */
/* Module Number: 1.2.3.5.1.1.2 */
20 /* Function: This module will check to make sure that the */
% ;: proper user is requesting their own file. :5
1K
¥y, /* Calling Modules: validate user_command */
X ;* Modules Called: stringcmp */
* */
) /* Global Variables Used: userblocks [portno] .userrm, */
g- /* file username */
X ;: Global Variables Changed: None :/
) 7% Author: Ronald K, Miller */
;: System: VAX 11/780, "MS (/S and UNIX O/S: testing only :/
: :: /w**m**un********tm**u*m***m*mm****tu**«**ﬁ** /
a7
;?Ej chk_user_name ()
o . beql
@ if (stringcmp(file_username,userblocks [portno] .usermm))
SN return(l) ;
o error(3) ;
N return(0) ;
-_."_*. end
1N
N
.ﬁ.
»
e
":J
o'c ':';':'
e
£
e E-52
oy
o~
R

.
v . et e e e e - . . - . -
) *.\‘.\‘ (GO -.‘ Tt 4N _.‘. « _... . ARSI v TN T e T e, BT AR IS Tt Tt
A ‘h A - - . DR AN PRI R) - iy o !

..........

Ak nia3 122k 04 G4 485 4 S 44 14 SRS A CAL ALAT I AT HUSEAO A AU S\ SLUIN I UL S Saii e a a e r.1

RS 4 AL A Y A o QU o 8 A oA miir geliny S, Ay XM AE I L SR SRS U 1 e LR S, “ ORGSR AT

{000

\d
.i /**********t*t***it***ﬁ/
A0 /* */
1 /* GET_USERNAME *
/% */
, /* Date: 5 Sept 1983 */
1 /* Version: 1,0 */
;i * *
3 /* Name: get,_username */
/* Module Number: 1.2.3.5.1.1.1.2 *
4 /* Function: This module will get the user name of the file *
e /* being requested. This is in order to check */
o ;: for user authority in a later module. :
ki
= /* Calling Modules: chk_filename */
) ;: Modules Called: None :/
i /* Global Variables Used: opened_files, file username, ®/
. /* BEGINUSER, ENDUSER *
'N /: Global Variables Changed: file_username :/
)
/* Author: Ronald K. Miller :

/* System: VAX 11/780, YMS (/S and UNIX O/S: testing only

/‘*****t********t*************i*******************t*********t***ﬁ/

YNy

K ﬁ qeti::serrm(fd)
N int 1,3
3 J=BEGINUSER;i=0;
X while(j < ENDUSER+l)
N file username[i++] = opened_files({fd,j++];
W return;
end
-
3
-
3
%
[N
.
\
l?
-.'I
:‘_ E-53
-

e

{
P

A
255

‘: o 4, a0
he e d
LA

g
R R

e
I

rter N
EEP PSP

4

-

AR, £ DA AN
Ot SRR AT

-

200

/*********t***t/

/* *
/* OPEN */
/% *
/* Date: 6 Sept 1983 */
/* Version: 1.3 */
/* */
/* Name: open */
/* Module Number: 1.2.3.5.1.1.1.1 */
/* Function: This module opens a file fram disk and then */
/* allows for reading from and writing to the */
/* particular file, */
/* */
/* Calling Modules: chk_filename */
;: Modules Called: get_directory :;
/* Global Variables Used: file_username, opened_files, name,*/
/* NUMSEC, BUFLENGTH, BUFSIZE, */
* DIRTRACK, DIRSECTOR, file, dtrack,*/
/* dsector, del_track, del sector *
/* Global Variables Changed: file username, opened file */

* Author: Ronald K, Miller */
* System: VAX 11/780, VM8 /S and UNIX O/S: testing only :/

/****t*i*tﬁ*************tﬁ**iﬁ***tﬁ**t*t***i***i***************ﬁﬁ/

open(file,code)
char file[];
int code;

int 1,j,k,location;
char buffer [BUFSIZE] [BUFLENGTH];
dtrack=DIRTRACK ;dsector=DIRSECTCR;

finished = 0;
while (1finished)
begin
read (dtrack,dsector ,buffer) ;
/* Reads in a block of the directory */
. /* and places it into buffer. */
=0;

while ((i < BUFLENGTH) && (buffer[i,0] != EOF))
/* Check of end of buffer or the end */
/* of the directory. */

k=0;
while (k < NAMESIZE)

name[k]=buffer(i] [k]3/* Places each filename into name*/
K4+ /* for comparision. */
end
if (stringcmp (name,file)) /* If the names are the same */

A a b R S R AN MR il 4) At M el ~'["T“‘F'-‘A?‘IT‘T-W.VL“WW:WW.?.W

»
-

g o -

W)
4y A G Ay A

.. ‘_.-.“

‘}:"l

s v -
YA

- 3.
| S CACRAK A

A ol W o3
L] LAkl
AR AL A A

| A0S

begin /* Place into opened_file */
j = 0; /* and then return(l). */

del_track = dtrack; /* Track and sector of where */
de]l_sector = dsector; /* the filename is located */

/* in the directory. */
vhile (j < BUFSIZE)

gpmed_f.ﬂes[lwat:lon] [J] = buffer{i] []];
++3
end
location++;
return(location - 1);
end
1443
end
if (i = BUFLENGTH)
/* If true means the entire directory */
begin /* has not be read, Therefore another */
dsector++; /* sector needs to be read in., If */
/* the last sector on the track has been */
/* need to go to next track and sector 0.*/

if (dsector > NUMSEC)

begin
dtrack++;
deector = 0;
end
end
else return(~l); /* return(-l) means reached end of the */
/* directory and no file was found. */
end
BE-55
AT \..\ \.‘,..\ -_‘.\~._~.‘.-’.'- A S T LI A P AT O e

_\ A S . . . 4 a Y S
LA VI AR R .'.\;'.'-P P A R e T T Y

.......

Yoo R s 22 1) Al WA e 1A DA e e - T AR A SR LAL ML e AL A LA C it A E A AR I ST NP A |

5 ‘.‘
AW
5
.:_'._ / RERRRRRRRRRRRRRRERRRRRRRRAARRRARRRRRRRERRAAARRAARARRREEARRARAR AR /
N /* */
™ /* ERROR */
g * */
L * Date: 6 Sept 1983 */
A * Version: 1,5 */
::_\. */
(3 * Name: error */
/* Module Number: 1.2.3.5.1.1.1.3 */
O * Function: This module will determine error received and */
}::: /* will build the necessary error message. */
R /* Calling Modules: det_valid_comm, chk_filename, */
K /* chk_user_name, execute_command, */
i /* chk_gpace */
Y ;: Modules Called: transmit_message :;
R /* Global Variables Used: message, MESSIZE */
r 2 ;: Global Variables Changed: message :;
o /* Author: Ronald K. Miller */
bl 4* System: VAX 11/780, WS /S and UNIX O/S: testing only :5
< *
';'é /uumn*nm*****ﬁ**m“************u*****u*“***********/
Fu ' error (type)
rs,) int type;
2) begin
-\:;- switch (type)
s begin
's'.; case 1: { strcpy(message,
) "SYNTAX ERRCR \n");
: break;}
vy case 2: { strcpy(message,
"INVALID FILENAME ")
o4 break;}
o case 3: { strcpy(message,
o> *"INVALID USER ATTEMFTING TO RETRIVE FILE\n");
‘ break;}
e case 4: { strcpy(message,
o "ILLEGAL USER \n");
e break;}
b case 5: { strcpy(message,
o "UNADTHORIZED USER \n");
break;}
T case 6: { strcpy(message,
“l "UNRECONIZEABLE CODE - 'IRY AGAIN \n");
D break;}
o case 7: { strcpy(message,
{7 "NOT ENOUGH MEMORY SPACE TO EXECUTE NOW \n");
- break;}
SR, case 8: { strcpy(message,
si‘ Ve
% B-56
.\‘:
\k TR AN I -~ ."\". - AR - a AR RS

Uy
b
[)
[
L4
’
1

P

oy "PROGRAM TOO LARGE FOR MEMORY \n");
£ break;}
case 9: { strcpy(message,

"PROCESS ABORTED, DID NOT COMPLETE... \n");

el b
A AN "L‘,‘;l

o

R break;}
AN case 10:{ strcpy(message,
o "NONEXECUTABLE FILE, UNABLE TO RUN \n");
-.'}:\ break;}
case 11:{ strcpy(message,

ey "EXECUTABLE FILE, UNABLE TO PRINT \n");
:“\. break;}
3 default: return(0);
o end
oy tranamit_message (message) ;

' return(0) ;

A

~,

o

o

.'

b
.:.'}

Ve |
4

3
::\. R / **ﬁ***ﬁ***/
S /* */
/* TRANSMIT_MESSAGE *
. /% *
T /* Date: 7 Sept 1983 *
X /* Version: 1.0 *
N /t *
ox /* Name: transmit _message *
/* Module Number: 1.2.3.1.2.1 *
/* Function: This module is to transmit any message *
h /* received to the correct user, */
"y /* */
2 /* Calling Modules: error, build message */
s /* Modules Called: None */
*
o~ /* Global Variables Used: None *
Y * Global Variables Changed: None */
N /* */
o) /* Author: Ronald K, Miller */
N /* System: VAX 11/780, ™S O/S and UNIX O/S: testing only */
: *
5 / RRARRRARRRRARRERRRRRRRERRARRERRRRRRRRARRRRRRRAEARARARARRRARRARER /
) tranamit,_message (string)
o char string(];
& m
@ int 1
Y i=0;
2 do begin
N while ((inp(ports[portno] .statport) &
) ports[portno] .sendbit) == 0);
- “th(ptts [portno] .dataport,string[i]) s
- while (string[i++] 1= "\n');
. return;
~ end
\
2
0
’-,
x
e
N

ki

OO
’I'.
N

e e 3
P A BRES S QW aF 4

E~-58

...................................

I\J
0y
."‘ *o
3,

*: _."‘:.- / RRRERERRRRERRRRARARRRERRRRRRARRERARRRARERARRAARRARRRR R AR AR A ARk R kR /
d'_.. ‘J"_f / * *
AR
- * *
/e = 4
i /* Date: 7 Sept 1983 */
- /* Version: 1.2 */
AN /* */

T /* Name: read */

/* Module Number: l1.2.3.5.2.1.3 */

S /* Function: To read a sector from the disk when given the */

D /* track number and sector number to read, */

S /* */

Y /* Calling Modules: open */

S ;* Modules Called: None */
* *

2 hd Global Variables Used: None */
‘fi 5: Global Varjiables Changed: None :;

%

Ao * Author: Ronald K, Miller */
W /* System: VAX 11/780, WS O/S and UNIX O/S: testing only */
* *
4 E ;m*****ntm****m**************u*******u**************nt*;
ﬁ; read(track, sector , inbuf)

" int track,sector;
b, m char inbuf [BOFSIZE] [BUFLENGTH];

) begin

:'n’ o int kliljf
Yo char c;

..-:4 i= j =k =0;

et while (k < BYTE_SIZE)

- begin
a while ((inp(DISKSTAT) & DISKRDA) == 0);

A ¢ = inp(DISKPORT) ;
o inbuf(i] [j] = c;i++
Y if (c == BOP) finished = 1; /* When EOF reached the entire */
o if (J == BUFLENGTH) /* f£ile has been read in. */
o begin

i+ = 0;

v k44

" end

> retutn;

. end
s
s
&2
N o

TR N]

o

. E-59

.
l‘.
[y '
0
L
D)

/***ﬁ/

/* */
/* BUILD_PARSE_TABLE */
/* *
/* Date: 7 Sept 198 */
/* Version: 1.4 */
/* *
/* Name: build parse_table */
/* Module Number: 1.2.2.3 */
/* Function: This module will break the command line into */
;: its different parameters. */
*®
/* Calling Modules: p_comm_line */
;* Modules Called: None */
* */
/* Global Variables Used: command_line, command_table */
;* Global Variables Changed: command_table */
* */
/* Author: Ronald K, Miller */
;* System: VAX 11/780, VMS (/S and UNIX O/S: testing only */
* *

/t***/

build parse_table()
begin
#define BLANK t ' /% defines a blank */
int 1,j,k,1,m;
i=j=k=1=m=0;
while (1 < COMMSIZE)
begin
command_table.command [1] = BLANK
command_table.parameterl[1l] =
command_table.parameter2[1] = ELANK;

-e

1++;
end
while (1 < PARASIZE)
begin
command_table.parameterl|l] =
command_table.parameter2{1] = BLANK;
emilH;
while (command line[i] != BIANK && command_line[i] != '\n')
command_table,command [j++] = command_line[i++];
while (command line[i++] == BLANK);
if(command_line[i] == '\n')
begin
command_table.numparam = 0;
emrietum;
while (command_line[i] != BIANK && command line[i] != "\n')
command_table.parameterl [k++] = command line[i++];
while (command_line([i++] == BLANK):

E-60

command_table.parameter2[mi+] = command _line[i++];

command_table.numparam = 2;

command_table.numparam = 1;
return;

return;

end

while (command_line[i] 1= BLANK && command_line([i] != '\n')

if (command_line[i] = "\n')

begin
end

e
o0
* e
e
TeT AR I h PR SR XY I P/
e R

Y \c.\.... ...-\. : RN A

E-61

DR
v

- KRXAXIAY, .)

.

Y
s e Yo T
%y)

e
.b

T

-

< '.';"x

N e

.
.
e

M

A
Ll

'.\n:‘.'.‘;"

“ v e A
. Ta e e
LIPS IR A

Aatied ok

.o .
U

'Y

et

..'l_,

-

Iage:

:_l:.' RO ANCIR R R R A A LS 2 2 A T S AR PSSt e S S e TR S A S A S A S A A A A A AR R g
N
:‘\.- . /************'k***/ |
Pl ‘_-. * * I
R 5* EXCEUTE,_COMMAND *;
e /* */
G /* Date: 9 Sept 198 */
0 /* Version: 2.1 */
2 s :
2 /* Name: execute_command %/
/* Module Number: 1.2.3.5.2 */
538 /* Function: This module will execute a given user command */
o /* only after the command has been determined to */
L /* be valid. */
a8 /* *
o /* Calling Modules: execute_user_command */
;* Modules Called: get_file, send_file, process scheduler *;
. * *
‘ht’
) /* Global Variables Used: cnd */
N ;* Global Variables Changed: None :;
e *
o /* Author: Ronald K. Miller */
= /* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
oA * *
'\i ;***t /
%)
n
.?I_'_ execute_command ()
o . begin
(%) gwitch (cmd)
o begin
e case 1:
2, case 2:
0 case 3: { if(get_file(atoi (opened_files[fd,BEGTRACK]),
i atod (opened_files[fd,BEGSECTOR])))
' process scheduler() ; break; }
for case 4: { 1f(get_file(del_track,de1_sector))
AN process_scheduler(); break; }
o case 5: { if(get._file(DIRm,DIRSEmOR))
= process_scheduler() ; break; }
L default: { error(6);sbreak; }
end
"y return;
e end
1:. j
i
1 . -
;§ - :'
;I;ﬁ
::::j E-62
3
.,-_‘:,
"7.' . .'- . 11.:". LI S ele 't',"._'".."-." e ;. . .; AT TN

g
>,
W
2
’Q
: : , \-‘..‘ / RERRERRERRRRERERAERERERERRERARRARRNRRRAARNRRERRARAA AR A NARA AR AR A RA L /
AN /* */
- /* GET_FILE */
" * * /
P /* Date: 9 Sept 1983 *
- - /* Version: 1,2 *
':' / hd *
- /* Name: get_file *
/* Module Number: 1.2.3.5.2.1 *
/* Function: This module preforms all the necessary *
e /* functions to run an executable file. *
B /* */
% /* Calling Modules: execute_command, build pcb */
> ;* Modules Called: read, chk_space */
* *
\ /* Global Variables Used: opened_files, BEGSIZE, size, */
355 /* begin_address, end_address */
% 5: Global Variables Changed: begin_address, end_address :/
MG /* Author: Ronald K. Miller */
- /: System: VAX 11/780, VYMS O/S and UNIX O/S: testing only *
;g:: ;ﬁ*************ﬂ*******“******************ﬁ***********ﬁ*“** / 1
-'Aﬁ)
,-S get_file(track,sector)
s a int track,sector;
o begin
~ int {,3; ‘
Ly char charsize; |
o charsize = opened_files[£fd,BBEGSIZE]; ;
Y size = atoi (charsize); /* Converting a string to integer */ ‘
o if (ichk_space(size)) /* to check if enough space */ ‘
in
.':-' error(7) ; /* Not enough space to put the */
:_, return(0) ; /* program into main memory */
s end
N build_pcb(cmd-1) ;
finished = 0;
, begin_address[number_jobs] = memory_loc
N /* this gets the first location */
g /* where the program is being */
b /* placed */
N peb [portno] .of £set,_address = memory_loc;
= track = opened_files[fd,BEGTRACK];
- sector = opened_files[fd,BEGSECTOR] ;
s while (1finished)
- begin
- read (track,sector ,memory_loc) ;
- memory._loc = memory_loc + BYTE_SIZE;
= track = memory_loc - 2;
A< BN sector = memory_loc - 1;
SR if(track == sector == 0)
- X
\ ;3
,_.3 E-63
¥
)
'C'.‘\ N] '...).. ’: 'f.;q'-f -’;{ P "o .:$,-* S'-\"-' \-r\(\_.. ‘-. ..' ~.'. - :- :. .._: - _:.. . :. ;':...-_..._..'-‘.

Coe tam oot i dar 0 b e oo Ui byt i R g oA g - AIC A A MR 0 CLA LA AL O S AR A T DAL DAt A 00 S NI ‘-‘.“-T

i {. iffgddshedi)- 1;
A DS AR =
. - finished= 1; /* If delete command only need to */
/* read one sector from the disk. */
memory_loc = memory_loc - 2
N /* Don't want to have the next */
N /* track and sector in memory. */

end
end_address [number_jobe] = memory_loc - BYTE_SIZE;
A /* This sets the last location */
b /* vhere the program is begin */
/* placed, */
, pcb [portno] .final_address = memory loc - BYTE_SIZE;
& pcb[portno] .io0_status = 0;
i /* The process is no longer in i/o wait */
5 number_jobs++; /* Total number of jobe in the system, */
> end
3

.‘,
l. \ \ a ~ -t
A AONA
) v -
AR
Q‘I’

L '.-. - b'n’.

YA
/* */

) /* CHR_SPACE */
* */
* Date: 13 Sept 198 */
* Version: 1,2 */

/* */
/* Name: chk_space */
/* Module Number: 1.2,3.5.2.1.1 */
* Function: This module will determine if there is enough */
» space in main memory to place the incoming */
* program, */
/% */
/* Calling Modules: get_file */
/: Modules Called: sort :5
/* Global Variables Used: size, begin_address, end_address, */
* order, number_jobs, BASE_ADIRESS, */
/* TOP_ADDRESS */
: Global Variables Changed: None :;
* Author: Ronald K, Miller ®/
* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
® *
/ﬂnmu***n***t*tmmnm*******umn*n*nn***u**ﬁf
(s, chk_space (size)
int size;
begin
int 1,3,k,1,bottam;
i=j=k =0;

if (number_jobe>1) /* If the more than one job on the system */
sort(order) 3 /* the location must be sorted fram largest */
/* to smallest. The sorted order is placed */
/* in the array called order. ®/
else if(number_jobs == ()
order{0] = MAXJOBS;
/* If no jobs on the system order must be */
/* initialized and this make the first value*/
/* equal to TOP_ADIRESS, */
else
begin
order[0] = 0; /* If only one job order must be inialized, */
order{l] = MAXJOBS;
end
1 = order(j];
bottam = BASE_ADIRESS;
/* bottam is use to £ind how much free */
/* space is located between jobs. */
while(k < number_jobs+l)

begin
e if(size <= (begin_address[i]-bottam))

. \.:. ‘\'.ﬁ_'.;il‘.\.-’\'; _'-‘-,-:. . L e e tet e '.','-'.'f.‘&'.'.'.'_'.‘_'-'.'.'.'-'_ e, {.--_-A'. et e, .
NA AN P P T PP, L 8 S A A A S AT AR Seh

begin

memory_loc = bottam;

return(l) ;
end
if(k == Q)

error(8);
return(0) 3
end

bottan = end_address[i];

i = order(j++];
k++3

end

error(7) ;

return(0) ;
end

/* Make memory_loc equal to the last entry */

/* between jobs and then return(l). */

/* Move bottam to the last location of the */

/* next job, %/
E-66

e TS o R L P TR 'IJ
""" At W) AW ATIF WS PSSR A Y

Lol i Aa)
o o s e

§.rene

.0.,0..*'.5.—-\4-&‘—'.‘ y“- AR

d - e -
Ty Y VXl

/**t*t*ttt****t*********t***************************************f/

/* */
/* SORT */
/t *
/* Date: 13 Sept 198 */
/* Version: 1.1 */
* */
/* Name: sort */
/* Module Number: 1.2.3.5.2.1.1.1 */
/* Function: This module will sort the first location of */
/* each job in memory and place the indicies */
;* values in the array called order. *5
] ®
/* Calling Modules: chk_space */
5: Modules Called: None :;
/* Global Variables Used: order, begin_address, mmber_jobs */
;: Global Variables Changed: order :;
/* Author: Ronald K, Miller */

/* System: VAX 11/780, WS 0/S and UNIX 0/S: testing only */

/**t**f***********f/

sort (order)
int order(];
begin
int {,3,k,1,lowest,count, temp [MAXJOBS] ;
i=k =0;
i=1
count = mmber_jobs;
lowest = 0;
for (1=0;number,_jobs-1;1++)
temp(l] = begin_address(1];
/* Place the array of beginning address */
/* into a temporary array called temp., */
while (k < number_jobs)
begin
while (j < number_jobs)

begin
if(temp[]] < temp[lowest])
/* Find the lowest memory location. */
lowest = j;

I+

end
order[i++] = lowest;
temp{lowest] = TOP_ADIRESS;

/* Make the amallest location the */
/* largest value possible */
lowest = 0; /* Start from the top of the array again*/
end
k++;
E-67

- A “ M - i o - o - . Cak .- . oW, e VAt e e Y P e e e e

-\.Q
<
R
X
XN order(k] = MAXJOBS; /* Place the TOP_ADDRESS in the last %/
SRRSO return; /* row and then return, */

3

N '.':‘t.

P4
LI 2

. A'-"
a e et

. r"-" e

LA A
e Y)

.
_'a ‘S

-
4

N
N
‘.:::.
Ejs .n / ARRRRRRRARRRRRARAEARARAARRRRNERRARRRARRRRRRARRRRRRRRARAERARARR RN AR /
N .;.-.j' * */
e 8 /* SEND_FILE */
t * /
o /* Date: 14 Sept 1983 */
o /* Version: 1.1 */
e /* */
o /" Name: send_file */
. /* Module Number: 1.2.3.5.2.2.3.1 ®/
. * Function: This module will transmit a file to the user */
Y /* or the printer depending on what was requested.*/
X0k /* This file has already been placed into main */
5 ‘3 * memory. */
AN * %/
* Calling Modules: process scheduler */
. /* Modules Called: None */
- * */
%] /* Global Variables Used: None */
¥ /* Global Variables Changed: None */
o * */
o /* Buthor: Ronald K. Miller */
. /* System: VAX 11/780, V™MS (/S and UNIX O/S: testing only */
N * *
3 ;***m*m**********ﬂ“*************ﬁ*ﬂ*ﬂ****m*i******** *k /
’.‘;j
' send_file(port_num)
@ int port_pum;
3 et start
N H
:;-; char value;
XN start = pcb[portno] .offset_address;

e /* Inialize start to the beginning*/
. /* address in main memory. *
S value = inp(start); /* Take the first character from */
St /* memory. */
Y while(value I= EOF)

oY%

begin
Y vhile((inp(ports[port_num] .statport) &
: ports[port_nmm] .sendbit) == 0);

¢ outp (ports[port_mum] .dataport,value) ;
N4 value = inp(++start);
, end
¥ return;
end

.
N AT AW RT s P R AT R P W) "Mt a 4 a e e e . e e ..
ANk SRR D R S Vo VL

R e i e A i te /A A A A S g A T MRATIANN A e A infulle i e M S e Aalie b Sl A i R AN '_T

/**Q***t*t*ti/

. '\ /t */

T /* DEALLOCATE,_SPACE */
/* */
/* Date: 7 Oct 1983 */
/* Version: 1.0 */
* */
* Name: deallocate_space */
/* Module Number: 1.2.3.5.2.2.3.3 */
/* Function: This module frees the area of main memory that */
* a campleted process was occupying., This is */
* done by shifting the address a row up and */
* decrementing the number of jobe on the system., *5
] *
/* Calling Modules: clean_up, process scheduler */
;: Modules Called: None *;
®
/* Global Variables Used: portno, begin_address, */
/* end_address */
;* G'obal Variables Changed: begin_address, end address */
* *
/* Author: Ronald K, Miller */
/* System: VAX 11/780, WS (/S and UNIX O/S: testing only */
* *
;ﬁ*******t******t*********t**********************tt*************ﬁ/
m deal locate_space (row)
- int row;
begin
int i;
for (1=rownumber_jobs-1;i++)

begin_address[i] = begin_address(i+l];
/* Shift the beginning and */
/* ending address up one row */
end_addrees(i] = end_address(i+l];

end
number_jobs—3
return;
end

DAY

»)\ .':\':\

N LI
o
AN

&\' E-70

A NN

| PRI

‘e 1"-.‘ o

'y
.
PR

'n.&a) "

'y
-

. o~ am P
R RC I s o)

»

RS

]

B

2 P2 A

»

S

e

.

e
[

Appendix F
AMOS Users' Guide

This is the user guide for AMOS. It covers the
procedures to follow for interfacing with the operating

system. The procedures covered are:

1. Log-in

2. Log-off

3. User help

4. System changes

5. User commands
Log-in

The procedure to log-in consist of sending a carriage
return (<CR>). This can be done by either typing in a line
of text ended by a <CR> or by entering a single <CR>. The
system will prompt the user for a username. This prompt

will be:
USERNAME :

The user must input their username followed with a

<CR>. The system will prompt the user for a password.

TS PSR
3 4

LY

-‘-‘#‘."3\.\i:“?:\;“;f:‘:\.if'{5' el e L e S T e e

..............

This prompt will be:

PASSWORD:

The user must input their password followed with a

<CR>. If both username and password are valid, the system

will return the following message:

Log-in complete...

If either the username or password is invalid, the

system will return the following message:

ILLEGAL USER

Log-off

For the user to terminate interaction with the

operating system, the user must log-out. The following

message must be typed by the user to successfully log-out:

BYE<CR>

« e

Y

\\"‘_: .

IR The system will respond with the following message:
:5. Logged out...

. K :

T

. User Help

b3

b

A3

The user can ask for system or command information.

58
s

The format for the help command is:

o
< HELP 'subject'<CR>
) _."
’;i The 'subject' for system information can be either
..\

o . USERS or DEVS. The 'subject' for command information can
-~ Gz3 be one of the following:

£
X4

.

. e RUN
e LIST

- PRINT

o

".C

N DEL

. DIR

o

v 4

2o

e : For the system information the operating system will
\§ return the users on-line for USERS or the devices on-line
LA

A

for DEVS. For the command information the operating

a’s

system will return the following for the respective

> 8 I ’
- i)

commands:

OF
..l .'
R I
0‘. «
[T
ORI
o« &

XA

L)
.
»

e
o ‘e .

A et
[N

S

Format: RUN FILENAME (executable file)
Format: LIST FILENAME
Format: PRINT FILENAME (nonexecutable)
Format: DEL FILENAME
Format: DIR
If the 'subject' cannot be matched with the available
information, the system will respond with the following
message:
No help is available for that command
@ System Changes
To reconfigure the system the user must be logged-in
under the 'Superuser' username. The current permissable
changes are adding a username and deleting a username.
The following is the foriat for the two system changes
command:
SYS ADDUSER<CR>
SYS DELUSERKCR>
..::’:

AOAS - SSAAATENSS 4

vy -
(O]
a'a

/'
v

t{; In each case the system will prompt the 'Superuser’
for the desired username. This prompt will consist of:
USERNAME:
The 'Superuser' must then input the username.
User Commands
The user commands are listed in the Help User section
of this appendix. The following is the required format
for each command:
e RUN 'filename'<CR>

LIST 'filename'<CR>
PRINT ‘'filename'<CR>
DEL 'filename'<CR>

DIRKCR>

The 'filename' for the RUN command must be an

executable file. The 'filename' for the PRINT command

must be a nonexecutable file.

If 'filename' is not located in secondary memory, the

system will respond with the following message:

)
.I

7

y

?

- N

oo INVALID FILENAME

;
:ﬁ If ‘'filename' for the RUN command is not an
o executable file the system will respond with the following

A message:

_ NONEXECUTABLE FILE UNABLE TO RUN

;c

2 If 'filename' for the PRINT command is an executable

-~

o file the system will respond with the following message:

§:j EXECUTABLE FILE UNABLE TO PRINT

i
- : If the username of the file being accessed isn't the

- |
I§ same as the user's username, the system will respond with

a

% the following message: j
|
1__‘ |
- INVALID USER FOR FILE
N

‘X If all the above is valid but there isn't enough
':f space in main memory for execution of the job, the system

ﬁ will respond with the following message:

n

a'
» NOT ENOUGH MEMORY SPACE TO EXECUTE NOW
b,
?
S

-~ ’

-
A

F-6

b~
1

-~ .o v, R R T IRV I RY ST S R S T T ST N L R S TR I NN ST N e .
BN AT ORI B I L Y T N O N S S R PR A

.

C4
o

Lo, Pty If the job is too large for all of main memory, the
X system will respond with the following message:

o

e PROGRAM TOO LARGE FOR MEMORY
ﬁ% If no errors occur, the command will be executed.
B Upon completion of the job's execution, the system will
£ respond with the following message:

L

fi Processing of job complete...

e

.

35 If the job's execution is aborted at any time, the
e

Y

system will respond with the following message:

&

>

o

- PROCESS ABORTED, DID NOT COMPLETE

’ 1]

AL
o Other Error Messages
Y,

N
9
If the user does not input one of the above command

ij formats, the system will respond with the following
Y

e message:

<
Py SYNTAX ERROR

‘-..‘

\"

o
B :(.'

=2 If any new commands are added to AMOS, the formats
< A
3§ iE% for the new commands must be documented.
P

o F-7

]
.I
-

n
»
L O I T T I I S . L e lte e e e e M w f v e M o s . e e t.ce*. m mmamc. a4 m
D A N T N R T R R ST D e, O R R o e e T T

4

[

Y
R % &

Ll
.8
)
ﬁﬂ . Appendix G
K3 -
Rty Hierarchical Structure of Design
e
‘

This appendix presents the overall design 1in
hierachical form. The hierarchical concept 1s based on
the 1leveling of the extended machine concept (Ref. 7T:
15-20). The AMOS design can be presented in five levels
that are layered around the "bare machine", or computer,
The following is the five 1levels of the hilerarchical

structure presented:

l. Level 1: Lower level Process Scheduler modules
and any modules directly involved 1in the bare
machine.

2. Level 2: Memory Management Modules.

3. Level 3: Higher level Process Scheduler modules.

4, Level 4: Device Management Level.

5. Level 5: High Level Operating System Control.

The charts present the design using the hilerarchy
chart. The circles with the _numbers inside indicate what
level the next module is 1located or what 1level the

previous module 1s located.

Y

SN

G-1

Lt 2 K S T A A A 2D RCMEI SO W NS LA) AL S SLAA MR AL A LA LS -‘T

Qﬁ? rom Run rom Determine From Determine
: Process Valid Command Valid Command
: Run Run Log-in
o System
v Program Change User
From Determine From Determine '
Valid Command | Valid Command from Parse
ine
Log-out Help Poll
User Terminal
y User Ports
From Get om Execute
File AMOS
6 Build Initialize
PCB Data Base
Y
Insert PCB Retrieve Initialize
Data Base Global
Into eue i
nto Queu Information Variables

Level 1: Lower Level Process Scheduler Modules

. LT B8 RS R e U L B T I e S e I N R I, B L I I B '-'.'-Y

From Run From Run From Run
Process Process Process
Send File Writ; File Deallocate
o]
To Port Secondary Memory
L_Memory Space

From Execute

Command
Get
File
Check Read
Space File
Y To Build
Sort PCB
or
ﬂ Memory
b Locations
Sty
P‘c'-::
73
LY,

Level 23+ Memory Management Modules

i SAINE A e A § R A DACAL R ArRAS AL TAR A ey PR P AR A A A R A "

From
Parse Comman From
Line Execute

Process Command

Scheduler
g Process Get PCB Run
Ky 3 Process
By I/0 Wait
i,j Queue To
N Run
3 rogram
] To Insert
s..s‘ CB Into
> Queue
"éz Locate Insert PCB Check Get PCB
» - Unblocked |||Into Ready || Ready From Ready
‘ @ Processes Queue Queues Queues
5
S
Y]
':5 L To Send File
-,

From 1/0

A Wait Queue . .
- To Write File To é
A Secondary Memory
v To Deallocate é
. Memory Space
"
Level 3s+ Higher Level Process Scheduler Modules

L&
A

2

Py
-
LA

- -". [' -*‘."" (f J"..- B --‘0':\"- 'b(T\ l"."'.’l\.‘ T

PN S From Execute
- - AMOS

iQ. Determine
Valid
Command

Log-in Help Run Sve
3 Log-out un System
User Uger v User Change

Execute

a

User
N Command
.

" \ Validate Execute

Command Command

To
Processgpa—”’;;
Scheduler

Validate
Delete

Validate Validate Validate

A Run List Print To Get

File

Check
! Executable
File

Check Check
Filename Username |

- Level 4: Device Management Level

':-' .:-

G-5

I NN R P I N I o A I R N B O R N A D TR

A,

e
v
i e
: Execute
AMOS
To Initialize To Determine Valid
Data Base L Command
Parse
Command
Line
Read Build
To Poll To Process Command Command
Terminal Scheduler Line Table
Ports

Level 5: High Level Operating System Control

S Y05

‘.‘.”'"l"

a4

-ﬁ‘."."a_

ey
PRl

by

ICRRARR)

Can %
R
Wl

. (]

AN

s
AR

%S 5 Y "v,-un
AAAAXE 14

r
-

-
™,
n;.

-

P S

« % .
I 4
)

Vita

Lieutenant Ronald Keith Miller was born on 27
September 1960 in Erie, Pennsylvania. He graduated from
Fairview High School, Fairview, Pennsylvania, in 1978. He
attended The Citadel, The Military College of South
Carolina, Charleston, South Carolina, from which he
received a Bachelor of Science degree with a major in
Mathematics in 1982. He was commisioned wupon graduation
and entered the Air Force Institute of Technology in June

1982 as a first assignment.

Permanent Address:
333 Annette Drive

Goose Creek, S.C. 29445

R HLIIL A GBS S OIEY

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EN/83D-14

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

. . (If applicable)
School of Engineering

6¢c. ADORESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8¢c. ADORESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)

See Box 19

PERSONAL AUTHOR(S)

gaonald K. Miller, 2d Lt., USAF

13a TYPE OF REPOAT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT

MS Thesis FROM TO 1983 December 241

16. SUPPLEMENTARY NOTATION Ap; roved\b: ublic release: 1AW AFR 180-1%,
t&?ﬁ‘ v &R)R "y
SRS I MU TTTRES

n‘w Logern 0 oo

17, COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessa)oid ety 49 SlobachionBir)(A1C)
. . Wright-Palterson AFB OH 45133
- FIELOD SAOUP SuUB. GR. Operating Systems, Multiprogramming, Memory
09 02 Management

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

: sy
ns

i; s _ Abstract:

(c | A multiprogramming operating system, designated AFIT

;E;) Multiprogramming Operating System (AMOS), for the AFIT Digital
fﬁ Engineering Laboratory was designed at the detailed level

o and fully implemented, except for the assembly language

f% routines. The requirements were developed in the works of

.§ Yusko, Ross, and Huneycutt.

» This thesis effort was done in conjunction with the

3{ effort of Lt. Paul E. Cruser. This effort covers the detailed
fé " design and implementation of the operating system memory

% manager, and the specifications for the secondary storage.

é It also covers the detailed design and implementation of the
? . overall operating system.

UNCLASSIFIED

.....
.....................

